
Giuseppe Cerati (FNAL)
LArSoft Coordination Meeting
Nov. 1, 2022

Thread safety in  
SIOVDetPedestalService and SIOVChannelStatusService



2022/11/01

Introduction

• art and larsoft provide multithreading capabilities through TBB library
- art multithreading can process concurrently data across events or within the same event
- see talk1 and talk2

• Grid allocations have total available memory split by CPU cores
• Grid jobs often need slots with large memory, thus getting multiple cores
• Production jobs are however running single-threaded, thus use only one core

• We can achieve significant processing speedups if we are able to exploit 
multithreading and increase our core utilization efficiency
- multithreading within the event doesn’t need to load more event data, can exploit unused 

cores given the same memory allocation

2

https://indico.fnal.gov/event/15361/contributions/31407/attachments/19694/24583/art_mt_larsoft.pdf
https://cdcvs.fnal.gov/redmine/attachments/download/45304/art_mt_experiments_2.pdf


2022/11/01

Services and Multithreading
• Art does not allow to run multithreaded if services are not thread safe and 

consequently marked as “SHARED”
- see this talk by Kyle for details

• Currently in ICARUS stage0_run2_icarus_mc.fcl the following services are 
loaded, and only the first two are LEGACY (not SHARED)
- SIOVChannelStatusService, SIOVDetPedestalService, DetectorClocksServiceStandard, 

DetectorPropertiesServiceStandard, SignalShapingICARUSService, 
IcarusGeometryHelper, ICARUSChannelMap, LArPropertiesServiceStandard

• Scisoft team has been working on larsoft services with the goal of making 
them thread safe. Work is however taking significant time as changes are 
non-trivial and require to be propagated to downstream experiment code

3

https://indico.fnal.gov/event/23808/contributions/74064/attachments/46283/55621/larsoft-coordination-2020-03-24.pdf


2022/11/01

However…

• Scisoft team is targeting thread safety both across and within events
• Since we only care about the latter, the situation is significantly simpler:
- SIOVChannelStatusService and SIOVDetPedestalService access information from a DB
- Thread safety within events only requires that the DB access is done at event boundaries
- Once this is enforced we can make them SHARED, and prevent them to be used when 

parallelism across events is attempted
• using the “EnsureOnlyOneSchedule” functionality (link to class)

• Test branch of larevt doing what described above
- https://github.com/LArSoft/larevt/compare/develop...cerati:larevt:feature/

cerati_EnsureOnlyOneSchedule

4

https://github.com/LArSoft/larcore/blob/develop/larcore/CoreUtils/EnsureOnlyOneSchedule.h
https://github.com/LArSoft/larevt/compare/develop...cerati:larevt:feature/cerati_EnsureOnlyOneSchedule
https://github.com/LArSoft/larevt/compare/develop...cerati:larevt:feature/cerati_EnsureOnlyOneSchedule


2022/11/01

Implementation (V1)

• Draft PR: https://github.com/LArSoft/larevt/pull/18
- CI builds are successful (failure are due to broken workflows)

• Main idea:
- services inherit from EnsureOnlyOneSchedule to throw exception if >1 schedules used
- enforce DB update takes place at event boundaries SIOVXService::PreProcessEvent
• previously only updating the time stamp here

- prevent code other than the service to update the provider
• make Update and UpdateTimeStamp private, and add the service as friend class

- change SIOVXService to SHARED

• Possible limitation:
- current develop version is “fully lazy”, with DB updates only when needed (e.g. GetChannelStatus)
- if services are loaded in a job but not used then unnecessary pressure is put on the DB

5

https://github.com/LArSoft/larevt/pull/18


2022/11/01

Other possible implementations

• “V3”
- revert changes to services: still LEGACY and only time stamp update in PreProcessEvent
- add new services “XEnforceEventUpdate” implementing features as V1, to be used only 

where needed to avoid unnecessary calls to DB
- https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/

cerati_EnsureOnlyOneScheduleV3 

• “V4”
- same as V1 except only time stamp update in PreProcessEvent
- add mutex to DBUpdate function for thread safety while keeping service lazy
- https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/

cerati_EnsureOnlyOneScheduleV4 

6

https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/cerati_EnsureOnlyOneScheduleV3
https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/cerati_EnsureOnlyOneScheduleV3
https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/cerati_EnsureOnlyOneScheduleV4
https://github.com/cerati/larevt/compare/feature/cerati_EnsureOnlyOneSchedule...feature/cerati_EnsureOnlyOneScheduleV4


2022/11/01

Multithreading implementation in modules
• Significant work on multiple fronts in the past years, time to harvest it
- hit finder [paper], icarus signal processing, Wire Cell 

• Icarus stage0_run2_icarus_mc.fcl has basically the following steps 
multithreaded with TBB already:
- MCDecoderICARUSTPCwROI, Decon1DROI, ROIFinder, GausHitFinder
- Although with some updates to Decoder and ROIFinder

• Next I show results from this setup:
- icaruscode v09_60_00+branches, running stage0_run2_icarus_mc.fcl
• tested without (default) and with jemalloc library for memory allocations

- not meant to be a “final” version, goal is to motivate work to get there
• both for 1D and 2D deconvolution processing

7

https://arxiv.org/abs/2107.00812
https://jemalloc.net/


2022/11/01

Scaling results
• Tested on icarusbuild02, without other ongoing jobs 
- not a production environment
• Can achieve up to 4x speedup for the 4 modules that are multithreaded
• FullEvent stage0 processing speedup limited by other time consuming modules
• Memory increase is overall small, as expected

8

Out of the box, not necessarily optimized/tuned.



2022/11/01

Scaling of individual modules

9

Out of the box, not necessarily optimized/tuned.



2022/11/01

Conclusions

• Short-term path for SHARED services allowing for multithreading within event
- work for SciSoft team still needed for full thread safety across schedules

• Tests on 1D deconv. signal processing (up to hit finder) give speedups ≤4x
- actual speedups need to be measured in production environment
- use of jemalloc is typically beneficial for multithreading

• Defining services as SHARED is critical for moving forward, input welcome!
- hope to proceed as early as this week if any of the versions presented here is acceptable

• Thanks to Tracy Usher, Erica Snider, Kyle Knoepfel for useful discussions!
10



2022/11/01

Backup

11


