Searching Where The Light Isn't: Discovery Potential in LHC Anomalies

Kevin Pedro (FNAL) January 13, 2023

Outline

LHC, Standard Model, & Beyond

The LHC So Far

The Standard Model at the LHC

- Excellent agreement with theory across 14 decades of cross section values
- Measurements of weak bosons, Higgs, top, including multiparticle processes

Wine & Cheese

Kevin Pedro

More Standard Model

- Further excellent agreement with theory:
 - o tT cross section measurements from $\sqrt{s} = 1.96$ to 13.6 TeV
 - Higgs couplings (even in 2nd generation!)
- > What is missing from the standard model?

The Standard Model & Beyond

- SM alone cannot answer the big questions
- ➤ Motivation to search for new particles & interactions
- What wouldn't we have seen yet?

Wine & Cheese

Kevin Pedro

CMS Data Analysis School

- Celebrating a successful data analysis school! • o First in-person school since 2020
- 8 speakers, 46 facilitators, 46 students Wine & Cheese Kevin Pedro

Excesses

Our First Excess

• Which of these resonances is real?

Look Elsewhere Effect

- Which of these resonances is real?
- None of them!
 - All points from toy dataset generated from background-only distribution
- Need to consider probability of statistical fluctuations
 - o "Multiple comparison problem"
- Compute *trial factor*: *t* = *P*(my resonance)/*P*(any resonance) (for a given threshold)
- Local significance: before accounting for LEE
 O Divide local p-value by trial factor, then recompute *z*
- Global significance: after accounting for LEE
 - o Always lower than local

Recent Excesses

- Past ~year has seen a slew of results from the "full Run 2" dataset (~138 fb⁻¹)
- Many intriguing excesses:

Today's Menu

- Focus on a few of the most significant excesses
- Brief details on others in backup

Dijet Resonances

- One of the simplest and most generic signatures of new physics
 - Applies to any resonance that can be produced in *s*-channel by gluon-gluon fusion, quark-antiquark annihilation, or quark-gluon scattering
 - Benchmark models: W', Z', excited quarks, Randall-Sundrum gravitons, dark matter mediators, and more...
 - CMS strategy:
 - Combine R = 0.4 jets into wide jets if they have $\Delta R < 1.1 \rightarrow$ collect final state radiation to improve mass resolution
 - Estimate background via analytic fit to observed data

Wine & Cheese

High Mass Events

• Our story begins in 2018:

o Two events near 8 TeV

o One with unexpected properties!

• Theoretical prediction for QCD background with $m_{JJ} = 8$ TeV, $m_{J_1} = m_{J_2} = 1.8$ TeV: 4.5×10^{-5} events

o Uncertainty: < 100%

• While dijet search is generic by design, it doesn't target this topology directly...

Dedicated Search

- Several signal models proposed: diquark, coloron
- 4 narrow jets *j*, paired to make 2 wide jets *J*
 - \circ Require $\Delta R < 2.0$ to combine narrow jets (looser than dijet search) & low wide jet mass asymmetry
 - ο Bin in $\alpha = \overline{m}_{ij}/m_{4j}$ (avoid correlations), fit m_{4j}
- Result: a second event!

$$\circ$$
 m_Y = 8.6 TeV, m_X = 2.1 TeV:
3.9σ local, 1.6σ global

Nonresonant Excess

- Also search for nonresonant dijet pairs o e.g. from *R*-parity violating supersymmetry
- Same strategy, but fit \overline{m}_{ii}
- Another excess observed!

 \circ m_x = 0.95 TeV: 3.6 σ local, 2.5 σ global

• *Maybe* compatible with small excess from ATLAS trigger-level (scouting) search

Meanwhile...

- Both CMS & ATLAS published full Run 2 dijet searches
- Each has a few events near or above 8 TeV
- Potentially consistent w/ resonant paired dijet signal models: if $q\bar{q} \rightarrow Y \rightarrow XX$, then also $q\bar{q} \rightarrow Y \rightarrow q\bar{q}$

- Particles that couple to both leptons and quarks are predicted by many theories: grand unification, superstring theory, compositeness, etc.
- LQ properties:
 - o Spin: scalar or vector
 - $\circ\,$ Yukawa couplings λ to lepton $\ell\,$ and quark q
 - \circ Branching fractions β to given ℓ,q flavors
 - e.g. $\beta(b\tau)$ and $\beta(tv_{\tau})$ for LQ shown above
 - \circ Anomalous couplings κ to SM gauge fields

An Excess Appears

- Previous: scalar leptoquarks w/ $\lambda = 1$, $\kappa = 0$
- Here: choose signal parameters to fit excess (vector LQ, $\lambda = 2.5$, $\kappa = 1$)

 $\circ m_{LQ} = 2$ TeV: 3.4 σ local

Sort search variables by sensitivity
 Resonant channels:

$$S_{T} = p_{T}(\tau_{1}) + p_{T}(\tau_{2}) + p_{T}(j_{1}) + p_{T}(j_{2}) + p_{T}^{miss}$$

• Nonresonant channels:

 $\chi = \exp(|y(\tau_1)-y(\tau_2)|), y = rapidity$

• Driven by nonresonant signal

Signal	$m_{\rm LQ} = 1400 {\rm GeV}$		$m_{\rm LQ} = 2000 {\rm GeV}$	
	σ [pb]	Z	σ [fb]	Z
Vector, $\kappa = 1$				
Pair	$0.24\substack{+0.46 \\ -0.44}$	0.0	$0.24\substack{+0.41 \\ -0.39}$	0.0
Single, $\lambda = 1$	$1.00^{+0.89}_{-0.85}$	1.2	$0.60^{+0.66}_{-0.63}$	1.0
Single, $\lambda = 2.5$	$9.1^{+6.5}_{-6.2}$	1.5	25^{+18}_{-17}	1.4
Nonres.	58^{+18}_{-17}	3.5	51^{+16}_{-15}	3.5
Total, $\lambda = 1$	$0.42\substack{+0.69 \\ -0.66}$	0.0	$1.3^{+1.5}_{-1.4}$	0.5
Total, $\lambda = 2.5$	$12.2_{-6.8}^{+7.1}$	1.8	43^{+15}_{-14}	3.1

A Related Excess?

- Search for $\varphi \to \tau\tau$, using $m_T^{\text{tot}} = \sqrt{m_T^2(\vec{p}_T^{\tau_1}, \vec{p}_T^{\tau_2}) + m_T^2(\vec{p}_T^{\tau_1}, \vec{p}_T^{\text{miss}}) + m_T^2(\vec{p}_T^{\tau_2}, \vec{p}_T^{\text{miss}})}$ • Also provides a vector LQ interpretation
- $m_{\phi} = 1200 \text{ GeV}: 2.8\sigma \text{ local}, 2.4\sigma \text{ global}$
- Driven by "no b tag region" (no jet requirement)
 o Search also has 1b region
- vs. LQ search: 0j (jet veto), $0b+\geq 1j$, $\geq 1b$ regions
- Seemingly quite compatible... stay tuned!

Heavy Long-Lived Charged Particles

- Predicted by many models of supersymmetry:
 - Charged superpartners (charginos $\tilde{\chi}^{\pm}$, sleptons $\tilde{\ell}$) make ionization deposits (dE/dx) as they traverse the detector
 - Gluinos are EM neutral but color-charged: can form R-hadrons w/ SM quarks, which can have EM charge

• Ionization: dE/dx depends on mass m, charge Q, velocity β

$$-\left\langle \frac{dE}{dx}\right\rangle = 4\pi m_e n_e r_e^2 Q^2 \left(-1 + \frac{2}{\beta^2} \ln \frac{\beta\gamma}{I_e}\right)$$

Heavy Long-Lived Charged Particles

- Trigger on p_T^{miss} (from neutralinos or gravitinos)
- Require at least one high- p_T track with various quality & background rejection requirements
- Measure dE/dx (in MeV g^{-1} cm²) using inner detector:
 - Reconstruct track mass: $m_{dE/dx} \equiv p_{reco}/\beta\gamma(\langle dE/dx \rangle_{corr})$
 - o Signal regions: low $(1.8 \le dE/dx \le 2.4)$, high (dE/dx > 2.4)

Kevin Pedro

- $m_{\tilde{g}} = 1.4$ TeV: 3.6 σ local, 3.3 σ global
- 7 excess events w/ 1100 < m < 2800 GeV:
 - o 2 likely background (overflow in pixel tracker dynamic range)
 - \circ Other 5: $2.4 \leq dE/dx \leq 3.7~MeV~g^{-1}~cm^2$
 - \rightarrow predicted $\beta = 0.5-0.6$, but measured $\beta \approx 1$ (from ToF, MS, Calo)
 - Not consistent with heavy LLP hypothesis...

Another Interpretation

- Doubly-charged particles have β values compatible w/ measured dE/dx!
- Resonant production of relatively light daughter particles *d* from massive parent particle $P \rightarrow$ boosted
- Good match for kinematic properties of excess events

Prospects

Run 2 Prospects

- A statistically independent dataset exists just on the other side of the ring...
- Paired dijet search: no corresponding result from ATLAS (yet)
- Leptoquark search:
 - ATLAS has full Run 2 results for
 <u>bτbτ</u>, <u>bℓbℓ</u>, or <u>bττ</u> final states, but:
 - All require ≥ 1 b-jet in all signal regions
 - No nonresonant interpretations (only pair or single production)
 - ATLAS also has a search for $\underline{A/H} \rightarrow \tau \tau$:
 - Very minor excess in last bin, potentially consistent but not convincing...
- Heavy charged LLP search:
 Latest CMS result from <u>early Run 2</u>
 - o Updated result eagerly awaited!

Run 3 Parton Luminosity

- Parton luminosity: generic cross section to produce an *s*-channel resonance
- \sqrt{s} increase to 13.6 TeV: especially impactful for massive resonances
- Production rates can increase by a factor of 2 or more in Run 3

Kevin Pedro

Run 3 Prospects

Search	Mass [TeV]	Parton lumi ratio factor	Significance ↑: Run 2 lumi	Significance ↑: Full Run 3
Paired dijets	8	2	40%	100%
LQ, HCLLP	1–2	1.1–1.2	5-10%	50%
Boosted LLP pair	5	1.5	20%	70%

- Paired dijets, 2 events in Run 2 dataset:
 - o 4 events in Run 3 w/ Run 2 lumi
 - o 8 events in full Run 3 dataset
 - Almost 5σ, 8σ local
 - o And no LEE! (search for specific mass)
- Parton luminosity increase less relevant for lower-mass excesses
- May need to wait for end of Run 3 to conclude...

First evidence of top quarks from CDF in 1994: only 12 events!

Searches: Imagination vs. Reality

The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" but "That's funny..." — Isaac Asimov

Observations from Our Survey

• For all three significant excesses we've studied today:

o Signatures *don't match* signal models that initially motivated the searches

• Let's ask again: what wouldn't we have seen yet?

o Something we weren't looking for!

- Need to search where the light isn't
- So... how do we do that?

Anomaly Detection

Physicists", FERMILAB-Conf-90/94, May 1990

Wine & Cheese

Kevin Pedro

Applied similarly for inner and outer cells

Applied similarly for inner and outer cell

ML for Searches

- Usage of ML in HEP is growing, including searches
- Most common usage: object or event classification
 - \circ e.g. CMS leptoquark, ϕ →ττ searches: deep neural networks for b- and τ-tagging
- Many searches develop custom classifiers for their signal models
 - Pros: higher sensitivity (reject more SM background, keep signal)

• Cons: (potentially) lower sensitivity to other BSM signal models

- Can we get the pros without the cons?
- ➤ Anomaly detection:
 - o Learn (train ML algorithm) based only on what we know (SM)

 \circ Pick out what doesn't match or isn't recognized \rightarrow something new?

Wine & Cheese

Kevin Pedro
Case Study: Semivisible Jets

- What if dark matter is made up of composite particles, like visible matter?
- Strongly coupled hidden sector: dark QCD force with dark quarks & gluons
 O Unstable dark hadrons: decay to SM quarks → jets
 Q Stable dark hadrons: dark matter candidates
- Semivisible jets (SVJs): mixture of SM hadrons and DM!
 Look like mismeasured or neutrino-ful SM jets
- First CMS search: use BDT to tag SVJs, but also present results w/o tagger
 O Dark QCD models have many undetermined parameters

Autoencoders for Semivisible Jets

- Supervised classifier: trained on specific signal models (e.g. BDT)
 → may be insensitive to other signal model variations
- Autoencoder: creates latent representation that accurately reconstructs background → knows nothing about signal!
- Comparison: AE trained on QCD background, vs. BDT trained on signals w/ m_{dark} = 20 GeV
- Autoencoder can outperform BDT!

First Experimental Anomaly Search

• Targets $A \rightarrow BC$ signatures

o A more general dijet search

• Uses "classification without labels" (<u>CWoLa</u>) technique: train on multiple data regions, assume different mix of processes in each

- No sign of a high-mass dijet excess...
 - \circ BUT: only considers 30 $< m_J < 500$ GeV, $2.28 < m_{JJ} < 6.81$ TeV
- Need to be as inclusive as possible, even w/ anomaly detection!
- Newer ATLAS anomaly search for Y → XH uses autoencoder + Higgs tagger

Anomaly Challenges

Wine & Cheese

Kevin Pedro

Anomaly Detection in Trigger

- Anomaly detection in offline analysis is a great way to extract more from existing datasets
- But can we take more interesting data in ongoing Run 3?
- Substantial work to accelerate ML inference on FPGAs for L1 trigger
 Now applied to autoencoders!
- Effective models easily fit into ~1µs latency budget

Model	Latency [ns]	II [ns]
DNN AE QAT 8 bits	130	5
CNN AE QAT 4 bits	1480	895
DNN VAE PTQ 8 bits	80	5
CNN VAE PTQ 8 bits	365	115

How to Use Anomaly Triggers

- AE from semivisible jet study:
- Turn it into a trigger:
 - 1. Optimize threshold based on trigger rates & acceptance
 - 2. Deploy on FPGA w/ hls4ml
 - 3. Nobel prize?

How to Use Anomaly Triggers

- AE from semivisible jet study:
- Turn it into a trigger:
 - 1. Optimize threshold based on trigger rates & acceptance
 - 2. Deploy on FPGA w/ hls4ml
 - 3. Nobel prize?

- structure of the sector of the
- Important part of science: convincing other scientists!

• Are the triggered events signal or background?

Need to characterize *entire* AE response: use different *prescales* to control rates, p₃ > p₂ > p₁ > p₀ = 1

• Also need to *monitor* data: avoid collecting detector noise for 3 years

Another Way to Use Anomaly Triggers

- Trigger strategy, as before:
 - o Accept all events in signal region A
 - o Prescaled triggers for regions B, C, D

- Related idea: 2 decorrelated AEs
 - Con: decorrelation procedure reduces sensitivity vs. single AE

• Pro: facilitates "ABCD" background estimation

Conclusions

- Run 2 has produced many tantalizing hints of new physics
 Possible new resonances at 1, 2, 5, 8 TeV...
- Run 3 provides exciting opportunities! • $\sqrt{s} \rightarrow 13.6 \text{ TeV}: \sim 2 \times \text{ increase @ 8 TeV}$
 - \circ Also 2× increase in luminosity
- Many excesses observed look quite different from motivating signal models
- Avoid the streetlight effect: search where the light isn't
- Anomaly detection techniques are powerful for model-agnostic searches
 - But they're also tricky: use with caution!
- Plenty of potential new physics still to be found in the LHC dataset

Backup

References

- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults</u>
- <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-</u> <u>PHYS-PUB-2022-009/</u>
- <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-22-012/index.html</u>
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>
- <u>https://arxiv.org/abs/2211.11084</u>
- <u>https://arxiv.org/abs/2209.13128</u>
- <u>https://lss.fnal.gov/archive/1994/pub/Pub-94-116-E.pdf</u>
- See table (next slide) for links to search papers/conference notes
 Subsequent slides have links to additional references, if any

Table	e of	Excess	ses

Experiment	Process	Mass(es)	Local σ	Global σ
<u>CMS</u>	$\phi \rightarrow \tau \tau$	$m_{\phi} = 100 \text{ GeV}$	3.1	2.7
<u>CMS</u>	$\phi \rightarrow \tau \tau$	$m_{\phi} = 1.2 \text{ TeV}$	2.8	2.4
CMS	$H \rightarrow WW$	$m_{\rm H} = 650 {\rm GeV}$	3.8	2.6
<u>CMS</u>	$Y \rightarrow XX \rightarrow (jj)(jj)$	$m_{\rm Y} = 8.6 {\rm TeV}$	3.9	1.6
		$m_X = 2.1 \text{ TeV}$		
<u>CMS</u>	$XX \rightarrow (jj)(jj)$	$m_{\rm X} = 0.95 {\rm TeV}$	3.6	2.5
<u>CMS</u>	$W' \rightarrow WZ$	$m_{W'} = 2.1 \text{ TeV}$	3.6	2.3
<u>CMS</u>	$W' \rightarrow WZ$	$m_{W'} = 2.9 \text{ TeV}$	3.6	2.3
ATLAS	$X \rightarrow HH \rightarrow bbbb$	$m_X = 1.1 \text{ TeV}$	3.2	2.1
ATLAS	$H_5 \rightarrow WZ$	$m_{\rm H_{5}} = 375 {\rm GeV}$	2.8	1.6
CMS	$X \rightarrow \phi \phi \rightarrow bbbb$	$m_{\rm X} = 1 \text{ TeV}$	3.1	1.3
		$m_{\phi} = 75 \text{ GeV}$		
ATLAS	Heavy Charged LLP	$m_{\tilde{g}} = 1.4 \text{ TeV}$	3.6	3.3
<u>CMS</u>	$X \rightarrow HH \rightarrow WWWW$	$m_X = 750 \text{ GeV}$	2.1	
ATLAS	$X \rightarrow \gamma \gamma$	$m_X = 19 \text{ GeV}$	3.1	1.5
<u>CMS</u>	$LL \rightarrow (qq\ell)(qq\ell)$	$m_L = 600 \text{ GeV}$	2.8	
<u>CMS</u>	$LQ LQ \rightarrow (b\tau)(b\tau)$	$m_{LO} = 2 \text{ TeV}$	3.4	
ATLAS	$H \to Z_d Z_d \to \ell \ell \ell \ell$	$m_{Z_d} = 28 \text{ GeV}$	2.5	
<u>CMS</u>	$W_R \rightarrow N\ell$	$m_{W_P} = 6 \text{ TeV}$	2.95	2.78
		$m_N = 0.8 \text{ TeV}$		
ATLAS	$H \rightarrow aa \rightarrow bb\mu\mu$	$m_a = 52 \text{ GeV}$	3.3	1.7
<u>CMS</u>	$\tilde{t} \rightarrow tqqq (pair)$	$m_{\tilde{t}} = 400 \text{ GeV}$	2.8	
CMS	$T \rightarrow tZ$	$m_{\rm T} = 1.4 \text{ TeV}$	2.5	2.2

QCD at $m_{JJ} = 8 \text{ TeV}$

- $pp \rightarrow 4j$ in MadGraph5_aMC@NLO
- Uncertainties:
 - Cross section: NLO *k*-factor for 4j process is ~ 1
 - o PDFs: 21% from NNPDF2.3LO (valence quarks dominate)
 - o μ_R/μ_F : +72%, –40%
- Result: 4.5×10^{-5} events in 77.8 fb⁻¹ (similar results for other PDFs)
- Observation: 2 wide jets w/ m_J ≥ 1.8 TeV less likely than m_{4j} ≥ 8 TeV
 o Kinematically constrained: m_J ≈ m_{4j}/(2√(1+4/ΔR²)) for central jets

Loose: $m_{4i} > 7$ TeV,

Tight: $m_{4i} \ge 8$ TeV,

 $m_{J_1} > 1 \text{ TeV}, m_{J_2} > 1 \text{ TeV}$

 $| m_{J_1} \ge 1.8 \text{ TeV}, m_{J_2} \ge 1.8 \text{ TeV} |$

Paired Dijet Search

• 2^{nd} event: $\Delta R_1 = 1.5$, $\Delta R_2 = 1.3$

LQ Production Mode Contributions

Nonresonant Vector LQs

DeepTau

54

4 hidden layers, 100 nodes each

Input variable SV 2D flight distance significance Number of SV Track $\eta_{\rm rel}$ Corrected SV mass Number of tracks from SV SV energy ratio $\Delta R(SV, jet)$ 3D IP significance of the first six tracks Track $p_{T,rel}$ $\Delta R(\text{track}, \text{jet})$ Track $p_{\text{T,rel}}$ ratio Track distance Track decay length Summed tracks *E*_T ratio ΔR (summed tracks, jet) First track 2D IP significance above c threshold Number of selected tracks Jet $p_{\rm T}$

Kevin Pedro

ATLAS btbt

HCLLP Background Estimation

10²

10

Region	$p_{\rm T}$ [GeV]	$ \eta $	$E_{\rm T}^{\rm miss}$ [GeV]	dE/dx [MeV g ⁻¹ cm ²]
SR			> 170	> 1.8
CR-kin	> 120	< 1.8	> 170	< 1.8
CR-dEdx			< 170	> 0
VR-LowPt			> 170	> 1.8
CR-LowPt-kin	[50, 110]	< 1.8	> 170	< 1.8
CR-LowPt-dEdx			< 170	> 0
VR-HiEta			> 170	> 1.6
CR-HiEta-kin	> 50	[1.8, 2.5]	> 170	< 1.6
CR-HiEta-dEdx			< 170	> 0

0.2 0.30.4 0.6

- Toy track generation:
- 1. Sample $1/p_T$, η from **CR-kin**
- 2. Sample dE/dx from η bin of CR-dEdx
- Compute m using dE/dx– 3. $\beta\gamma$ calibration
- 10–40M toy tracks sampled
- Validated in validation regions (bottom)

Wine & Cheese

3 4 5 2

m [TeV]

Previous HCLLP Search

- Similar search previously conducted with mid Run 2 dataset
- Excess of events with mass 500–800 GeV $\rightarrow m_{\tilde{g}} = 600$ GeV: 2.4 σ local
- Not confirmed in updated search

o Excesses can be inspiring... but be careful placing bets until verification!

$H \rightarrow WW$

- Final states: eμ, μμ, ee
- DNN categorization into gluon-gluon fusion (ggF), vector boson fusion (VBF), or background
- Second DNN reconstructs resonance mass (regression)
- $m_H = 650 \text{ GeV}: 3.8\sigma \text{ local}, 2.6\sigma \text{ global}$

$'' \rightarrow WZ$

- Boosted jet reconstruction & categorization • $(q\bar{q}, b\bar{b})$ with <u>DeepAK8</u> algorithm
- $m_{W'} = 2.1, 2.9$ TeV: 3.6 σ local, 2.3 σ global
- No corresponding significant excesses in semileptonic final states (CMS, ATLAS)

q

q

q

W(Z)

W

 10^{6}

10⁵

10⁴

 10^{3} 10^{2}

10

10

 σ_{stat}

data-fit

CMS

DY/ggF VV HPHP cat.

65 < m^{AK8}_{ieto} < 105 GeV

2

65 < m^{AK8}_{int} < 105 GeV ----- Z+jets

Events / 100 GeV

Z'(W')

 $\overline{\mathbf{q}}$

q

4

3

🔶 Data

---- tī

$X \rightarrow HH \rightarrow bb\gamma\gamma$, $bb\tau\tau$, bbbb

$H_5 \rightarrow WZ$

- ANN used to select VBF signal events
- m_{H5} = 350 GeV: 2.8σ local, 1.6σ global
- No significant excess in alternative cutbased signal region
 - But overall limits weaker by 30–50%

$X \to \phi \phi \to b b b b$

$X \rightarrow HH \rightarrow WWWW, WW\tau\tau, \tau\tau\tau\tau$

• BDT used to classify signal and background

CMS

WZ

Data

Conversions

Events

10⁶

 10^{5}

10⁴

10³

10²

10

1

10-1

Data Expectation

Зl

関 Misid. ℓ

 $m_{x} = 750 \text{ GeV}, \text{ spin 2}$

ΖZ

- $m_x = 750 \text{ GeV}: 2.1\sigma \text{ local}$
- Driven by 2*l* same sign & 3*l* categories

138 fb⁻¹ (13 TeV)

Single H

💥 Uncertainty

12 13

Bin number

CMS

Conversions

 $X \rightarrow HH (1 \text{ pb})$

Events

10

10

10⁴

10³

10²

10 1

10-1

Data pectation

2ℓss

Other bkg

🛉 Data

Charge Misid.

 $m_{\chi} = 750 \text{ GeV}, \text{ spin 2}$

8

10

9

 $X \rightarrow \gamma \gamma$

- Search for boosted diphoton resonances
- m_X = 19.4 GeV:
 3.1σ local, 1.5σ global

- L: vector-like lepton
- Two graph neural networks (ABCNet architecture) used to distinguish signal from QCD (for 0- τ_h) and t7 (for 1-, 2- τ_h) 96.5 fb⁻¹(13-
- $m_L = 600 \text{ GeV}: 2.8\sigma \text{ local}$
- Driven by 1- & $2-\tau_h$ channels

$H \to Z_d Z_d \to \ell \ell \ell \ell$

- Signal region yield: 20 events observed 15.6 ± 0.4 ± 1.2 expected
- $m_{Z_d} = 28 \text{ GeV: } 2.5\sigma \text{ local}$
- Limits shown for kinetic mixing parameter ϵ and Higgs mixing parameter κ both = 10^{-4}

18[≞]

16

14

12

10

ATLAS

10 20

√s = 13 TeV, 139 fb⁻¹

30 40 50 60

HM Signal Region

Events / 2.5 GeV

К H ----••- Z_d

 Z_d

VVV, tī+Z

Z+jets

WZ, tī

ZZ*→ 4I

 $H \rightarrow ZZ^* \rightarrow 4I$ $m_{Z_{*}} = 20 \text{ GeV}$

m_{Za} = 35 GeV m_{z.} = 55 GeV

Uncertainty Data

70 80 90 100

 $\langle m_{\ell\ell} \rangle [GeV]$

$H \rightarrow aa \rightarrow bb\mu\mu$

Local p_o-value

- BDT trained to distinguish signal from background, in overlapping bins of 8 GeV in m_{μμ}
- m_a = 52 GeV: 3.3σ local, 1.7σ global
- Excess not apparent if BDT not applied

$t \rightarrow tqqq$ (pair)

- Semileptonic channel: one top decays to e or μ , other top decays to quarks
- Custom neural network distinguishes signal from background
 - o Gradient reversal used to decorrelate from N_{iets}

Events / bin

CMS

+ X

8

9

10⁸

 10^{7}

10⁶

10⁵

10⁴

10³

10²

10

1.05

0.95

Data / Pred.

• $m_{\tilde{t}} = 400 \text{ GeV}: 2.8\sigma \text{ local}$

 $\tilde{\chi}_1^0$

2

10

11

RPV m_x = 450 GeV

$T \rightarrow tZ$

- Hadronic top + p_T^{miss} final state: $\circ t \rightarrow Wb \rightarrow (q\bar{q})b, Z \rightarrow vv$
- Merged: top tagging w/ subjet b-tagging, softdrop mass, Nsubjettiness ratio τ_{32}
- Partially merged: W tagging w/ softdrop mass, τ_{21}
- Resolved: take highest-p_T combination of 3 jets
- Excess driven by resolved $+ \ge 1$ forward jet category in 2016 data
- $m_T = 1.4 \text{ TeV}: 2.5\sigma \text{ local}, 2.2\sigma \text{ global}$

72
$Y \rightarrow XH w$ / Anomaly Detection

- Anomaly score from variational recurrent NN
 - Trained on wide, high-p_T jets from data: constituent four-vectors & jet substructure variables

• Largest excess:
$$m_Y = 3.6$$
 TeV, 1.47σ global

