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Design Parameters

Cable test facility magnet for testing inserts
and cables in a high dipole filed.

Joint effort between the offices of Fusion Energy
Sciences and High Energy Physics (US Department of
Energy)
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A Target field:

0 Operationtarget: 15T at 1.9K

0 Design target: 16 T with 15% margin at 1.9 K
A Clear bore size:

0 144 mm x 94 mm rectangular aperture with
superimposed 106 mm diameter.

A Nb,Sn coils layout:

0 Block coil design with flare ends and rectangular
bore.

0 Coil 1: 40 turns/layer, Coil 2: 44 turns/layer. (Non-
graded coils).

A Mechanical design:

0 Aluminum shell-based structure using key-and-
bladder technology, with axial pre-load.
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A Uniform field length: straight section (within 1%
variation) > 750 mm

AWire specification: RRP 162/169, 1.1 mm diamete

A Cable specifications:

Parameter Unit Value
Strand diameter mm 1.1
No. strands 44
Cable width (bare, before reaction) mm 26.20
Cable thickness (bare, before reaction) mm 1.91
Cable width (bare, post-reaction) mm 26.46
Cable thickness (bare, post-reaction) mm 1.99
Insulation thickness mm 0.185
Cable width (insulated) mm 26.81
Cable thickness (insulated) mm 2.34
Inter-layer insulation mm 0.4




Technical Background

A The Test Facility Dipole desigrbased on studies and development of large aperture, high field dipoles over the pa
15+ years

1. LARP studies fl-[ | / & 5 A LJ2(EBSIL/RBIALXBR L], 2003) w
EFTA DipoléEDIPOPesign StudyEFDA/CEA/CRPP/FZK/LBNL,-P6)4
LD1magnet desigr§200912)at LBNL

FRESCA#fagnet developmen(CERN/CEEUCAR[20162018)
HEPdipalesign study (CERN/PSI/FAE/LBNL, 2017

a H~ DN

A We are taking full advantage of these efforts and experiencct®lerate the TFD development and decrease risk in
broad range of areasn particular

U Winding layout and paramete(6 ARP, EFDA, LD1/HD, FRES{ERR]ipd
U Colil tooling, parts, and fabrication procsfRESCA2, LD/HD)
U Magnetic, mechanical, protection models and anal{SRESCABREPdipd

A However, while building on this experience we are alstimizing the design to reflect the specific TFD requirements
in particular the higher field target
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Compari son of bfotkrtypemagnesnal 0O

nNtradit.]

Cosd
1300 mm .
TFD LHC
HD2 FRESCA2 —— dipole
; . 570 mm
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Magnet Cross-Section and Main Design Features

Aluminum
shell

Iron yoke —

Iron yoke
rods

Magnet
rods

Laminated
iron pads

Steel pusher —
G10 shim =

I ron pO I e 7 WG, "0

Steel spacer

Ti pole Steel rail
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AlBr rail

A The preloading at room temperature through
the bladders placed between the iron yokes
reduce the peak stress within the coil.

A The inclusion of a G10 shim reduces the

overall stress in the pole and within the pole
to coil interface.

A The location of the keys is based on the

reduction of the peak tension stress at the
pole to coil interface.

A A series of smartshims will be place within
the midplane of the magnet, coil 1 to coil 2
interface and coil 2 to vertical iron pad in
order to guarantee perfect contact geometry.

Al spacer



Two Dimensional Optimization (Magnetic)

A Coil size and position chosen to TABLE II]
. . . . . . ALTERNATIVE LAYOUT BESULTS
minimize load line margin while
. H : : Parameter Shifted
maintaining reasonable field quality ﬂpﬂmi;g T T
. . Short Sample Current 19.2 kA
A Load line margin at 1.9 K Load Line Margin 8126
Max Field (coil 1) 165 T
" ! 0 Max Feld (ool 2) 161 T
I ApprOXImater 81 /0 at 16 T Stored Energy (per quadrant) 1.8 MJ/m
.. . Total Fx (coil 1 .3 MNMN/m
| Approximately 76% at 15T Total Fy (ool 1) 2.7 MN/m
Tiotal l::-; (a:uil 2) 10.0 MP:'."m
A Field uniformity is approximately Total Fy (coil 2 6.9 MN/m
0.2% at 50 mm radius
LD Style - Shifted B4 [T]
I I I I .056493
Coll Layouts Considered in 2D Design Layer 4 1'“541
3.71436
Layer 5.54329
: T7.37222
9.20115
11.0301
12.859
14.6879
16.5169
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Two Dimensional Optimization (Mechanical)

. : Stress Histor Contact Pressure

A Spacer is introduced between the coils e Hm,m.}}/

to minimize bending stress on the coils S0 g ' Pzeasuze (i)
o == Pressure =21
.. .. .. 2 300 -,

A Key positions are optimized to minimize £ =
von Mises stress and tension at contact 2““ L =
interfaces o =

FRESCA - Dashed Lines n
. . . Of © \ , ]

A Maximum von Mises stress on the coils RT  CD 161 16T
I RT Loading: 126 MPa Pole Stress _ Von Mises Stress
i Cooldown: 145 MPa o
I Powering: 166 MPa BT v, Stxess (4Pa)

A Ensure sufficient safety margin is
present for other structure materials (i.e.
pole, yoke, shell) taking into account
fracture toughness where appropriate

D | e

H

6T

6T
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hree Dimensional Mechanical Analysis

3D design has been optimized i produces similar peak
stress as for 2D cross-section

Current design i Mechanical results (with full prestress for 16 T)

e oy ms 2 = B g
UL % U1 % U1 5
Kev. r PLOT NO. 1 PIOT NO. 1 PIOT NO. 1
STEP-1 STEP=2 STEP=4
SUB =4 SUB =1 SUB =1
TIME=1 TIME=2 TIME=
SEQV (BVG) SEQV (AVG) SEQV )
PowerGraphics PowerGraphics PowerGraphics
EFACET-1 EFACET-1 EFACET-1
AVRES=Mat AVRES=Mat AVRES=Mat
DMX =.577E-03 DMX =.002976 DMX =.00284
SMN =.726E+07 SMN =.167E+08 SMN =.167E+08
gy gt i
3 7k & + 3
o . 184E+08 o .317E+08 e .325E+08
B 1296E+08 B LA6TE+08 O -487E+08
-408E+08 -617E+08 -650E+08
B - S19E+08 - 767E+08 B -812E+08
== 631E+08 T -918E+08 O -975E+08
B [743E+08 B 107E+09 B 112E+09
' Seeri08 11575105 1265105
5 08E+09 W 95oR+09 B 62R+09
Keys, rod Cool-down to 4.5 K 16T
Peak stress below 110 MPa 152 MPa on the high field 162 MPa in the low region
at room temperature region after cooldown at16 T
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Advanced Modeling Including Strain Dependence on
Critical Current
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dependence
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A The short sample limit
for each strand, as a
function of field and
strain is computed:

Detail ed 06st
of the magnet (2D)

Critical surface
parametrization from
strand measurements
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