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Magnet Testing is The Bottleneck to Ultra-High Field Applications M

The recent developments of HTS Bi-2212 round wire and cable are
clear examples of rapid progress with test coils
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Unique HTS Test-bed : 161 mm, 14 T LTS, 10 kA

14 T HTS Coil Test Bed
e 10kAbus, 6 x 1.2 kA power supplies
* Enables individual cable and cable A)

magnet testing
* Magnet bore 161 mm, 200 mm access bore
for leads, 128 ppm uncorrected
homogeneity (1 cm DSV)

Large bore enables insert magnets: N
 To explore field generation and mechanical e
limits in strand-wound and cable wound s co ST

coils

 To add additional means to improve field
homogeneity (e.g., compensation coils,
shims etc.)

* |Implement novel HTS quench management

Upgrades underway: 2 more 1.2 kA supplies,  A) Schematic of the 12 T LTS (red) magnet with a 200 mm probe access and a 161 mm cold
10 kA VCL, FPGA control, and faster IGBT bore for HTS insert (green); B) Picture of the LTS & HTS support systems; C) Picture of the 12

replacement to mechanical contactors for T magnet cryostat with external protection elements; D) Picture of the top plate of the 12 T

quench management magnet during a recent test of an HTS Bi-2212 Rutherford cable solenoid.
u
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CORC® magnet cables and wires

CORC® wires (2.5 — 4.5 mm diameter)

* Wound from 2 —3 mm wide tapes with 25 and 30 um
substrate

e Typically no more than about 30 tapes

* Flexible with bending down to < 50 mm diameter

CORC?® cable (5 — 8 mm diameter) /

* Wound from 3 —4 mm wide tapes with 30 =50 um o
substrate

* Typically no more than about 50 tapes
* Flexible with bending down to > 100 mm diameter

-

CORC®-Cable In Conduit Conductor (CICC)

* Performance as high as 100,000 A (4.2 K, 20 T)
e Combination of multiple CORC® cables or wires
* Bending diameter about 1 meter

IGH
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High-field insert solenoid wound from CORC® cables

Addresses main challenges of low-inductance HTS magnets

e Operate CORC® insert solenoid in 14 T background field
 CORC® insert should have meaningful bore: 100 mm diameter
* High operating current: 4,000 — 5,000 A

* J,>200 A/mm?

* Operate at JBr source stress >250 MPa

CORC® cable layout
* 28 REBCO tapes of 3 mm width containing 30 um substrates
 4.56 mm CORC® cable outer diameter

CORC® insert layout

e 100 mm inner diameter, 143 mm OD

* 4 layers, 45 turns

 18.5 m of CORC® cable

*  Wet-wound with Stycast 2850

e Stainless steel overbanding between layers

14 T LTS
(161 mm bore)
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CORC® magnet winding
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Interlayer stainless steel
overbanding
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CORC® magnet test: 14 T background field

Results 14 T background field

 Maximum current 4,200 A to avoid quench trigger
* [.=4,404 @ 0.1 uV/cm

* Contact resistance 11.1 nQ

 15.86 T central field ' ' ' : ' ;
e 16.77 T on conductor -
* JBr source stress 275 MPa 04k |
S
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CORC® insert solenoid test: summary

CORCP® insert impact
* First HTS insert magnet tested at high current (>1 kA) in a background field

» Stable operation likely due to current sharing between tapes in the CORC® cable
* Combination of high /, J , and JBr demonstrated at 16.8 T peak field

06 _ 1 1 % 1 1 |
Applied field | Central field at | Peak field|/_ (0.1 pV/cm)|n-value J,, J,
[T] 1, [7] at/, [T] [A] 1 | [A/mm?] |[A/mm?] 0.4
10 12.25 13.35 5,315 7.9 203.9 | 3403 S o2b 1l i
12 14.08 15.09 4,908 9.1 1883 | 314.2 = | f
14 15.86 16.77 4,404 10.5 | 1689 | 281.9 = 00 I LT L
= E
>I 0.2 Applied field
D. C. van der Laan, et al., :lgl
Supercond. Sci. Technol. (2020) 04 T 7
https://doi.org/10.1088/1361-6668/ab7fbe o6l , i IONS (01 iViCm)
1000 2000 3000 4000 5000
| (A)

Conductor challenges when going to higher field and larger coil diameters
* A Central Solenoid in a future compact fusion reactor may have a JBr of 200 A/mm? x
20T x 0.2 m = 800 MPa (source stress)
* How to further optimize the CORC® conductor to allow higher hoop stress, but also a
higher irreversible strain limit?

Advanced Conductor Technologies

WWW.OdVGﬂCGQ‘COﬂdUCfOf. com

NATIONAL HIGH

UNIVERSITY OF TWENTE. F|E|_|ﬁ_%3l§p§1cl)%

&y



https://doi.org/10.1088/1361-6668/ab7fbe

Summary

First high-current CORC® insert solenoid successfully tested
* Operation at over 4.4 kA in 14 T background field, generating a peak field of 16.77 T
* Operated at 282 A/mm? and 275 MPa JBr source stress at 14 T background field

Advanced Conductor Technologies
www.advancedconductor.com




High field low-cycle fatigue testing of HTS
CORC® insert solenoid with fusion relevant
parameters
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Overview: Coil and Test Parameters

PPPL_CORC i :
€0 Nomina p_. Field | HTS Field
Product No. ACT- CORC, 20191113-3 Day | Test | | F'Te'd (7] (mT] Max lop [A]
Powder M4-534-105 0508 T
Cable insulation Heat Shrink + Kapton between Cu T2 0 -0.01 725.04 7172
tape and cable
Diameter [mm] 5.86 T7 3 3.00 751.26 6965
ID ; OD ; Height [mm] 119; 152; 60 117 c 5 03 575 63 5507
Turn ; Layer (Total) 6;2(12) 1 ) '
Magnet constant [mT/A] 0.102 726 | 8 8.07 300.36 2903
Inductance [mH] ~0.0186
Conductor length [m] 51 T36 | 10 10.14 303.24 2987
Status Tested T49 | 12 12.16 311.00 2761
) i 56| O -0.01 571.05 6968
* Primary purpose: Stress cycling and
. T60 5 5.04 626.83 5984
demonstrate fusion relevant magnet 2
T71 | 10 10.14 339.03 3391
technology
T88 | 12 12.16 510.87 4704

* |nsulated cable wound in channel

inside steel shell. . T66: 69 cycles [2200, 5000] A, [30, 66] MPa

* No epoxy or other filler e T70:50cycles [2000, 3200] A, [55, 88] MPa
e T73:127 cycles [1600, 2800] A, [54, 93] MPa

« T87: 67 cycles [3400,4600] A, [113, 152] MPa




Cable Instrumentation Considerations

V-tap number |Voltage tap location Description
1 Ato A Cowound Cu Wire >
2 Ato A Cowound Cu Tape G
3 Ato A Cowound Cu Wire "@ 3x2 tapes
4 BtoB Cowound Cu Wire
5 BtoB Cowound Cu Wire
6 Ato A Not cowound - broke
7 Ato A Not cowound
Cu-Cu C-C Cu terminal extensions e o g o S
Hall LHP-NA #2423 50 mA, 41.3 mV/T, offset 23 uV e AHHHHR L
X161472 Cernox top plate “/ “rf”!” l
CX-1050-SD-4 X20428 Cernox positive Cu bus
X157000 Cernox bottom plate ‘ ”!I “"ll l‘IM o

 Novel insulated co-wound copper tape

— Matches very closely to cable inductance
 Co-wound wires to ensure redundant quench protection

— For example, wire pair number 6 got pinched in the structure
 Simple wire pairs show inductive voltages and movement




Current - Time

Initial 4 K self field testing shows a stable but evolving behavior
Voltages nominally at the same location behave differently due to S
inductive sensitivity.
I . I I 1002:
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Tape-2: Best indicator of cable transition 14



Reasonable Screening Current Induced Field V]

Field [T]

Magnetic Field vs LTS Current - Day 1

14 . . Field as a Function of HTS Current
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Excess field max is 163 mT ,
And decays over time of measurements at high field Median: 0.10164 average: 0.10194 15



First in-field test 3T: Saw-tooth step-wise current ramp;

m  Cowound_tape_2 T7

— PowerlLawlV (User) Fit of "220405_LHe_CORC_PPPL_3T_T7 1" R"Cowound_tape 2 T7"

Higher voltages on initial hysteresis current loops

Current - Time
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7000

6000

Voltages simpler in second in-field test =

-
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We consistently observed that the first time a current is reached after significant field changes the voltages showed higher
nonlinear behavior. The largest factors are likely magnetization effects influencing initial current distributions. Cable and tape
motion also play a role, e.g. stick slip. This has implications for operation, such as quench detection decisions.



12 T: Complex evolution to stable VI curve \Y/

Voltage [V]

Getting braver post-cycling, we reach further into the transition past extended
events that require widening the quench detection thresholds
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High-Field Fatigue:(T87) 12 T BG, 68 cycles, [3400,4600] A[}]
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12 T: Reduced baseline after cycling

\Y

B Cowound tape 2 T88

—— PowerLawlV (User) Fit of "220406_LHe_CORC_PPPL_12T_T88 1" S"Cowound_tape_2"
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2.5%x10% 9 | PowerLawlV (User) Fit of "220406_LHe CORC_PPPL 12T T72 1" T"Cowound_tape 2 T72"
. |
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2.0x10% 4 [Model PowerLawlV (User)
Equation (Vc*(x/1c)*n)+(R*x)
Ic 3324.22814 + 125.566
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< 1.5x107 7 g 1.24615E-8 + 1.20575
< Ve 51E-5+ 0 After Cycling
o Adj. R-Squa 0.99309
% 1.0x10™ 4 Model PowerLawl!V (User)
> Equation (Ve*(x/1c)*n)+(R*x)
Ic 4514.94301 £ 12.21569
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R-Square (COD) 0.95947
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Discussion Points

Higher quench currents and apparent I. after cycling
— No signs of degradation from low-cycle fatigue

Complex mix of phenomena in voltages

— Current sharing, cable motion, strand motion, screening currents, contact
resistance, strand degradation, co-wound voltage-tap wire motion

— Hard to distinguish true thermal runaway (false positives, transient voltage
spikes, change in current sharing dissipation, or local quenches)

* Must be conservative on quench detection
— The cable appears very stable, despite the dynamic behavior of the coil
— We could benefit from alternative diagnostics to deconvolute behaviors

Screening currents are reasonable, seem to affect initial current
distributions after background field is ramped, and decay as expected

22
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First Bi-2212 cable solenoid was wound and tested

“Baby-Ruth” test solenoid
& * Firstin a series of Bi-2212 Rutherford cable coils of increasing size

« Similar to Bi-2212 strand (and based on positive experience with
LBNL accelerator cable), cable is coated with TiO, and braided

* Terminal interface was a challenge due to small footprint
» Enables high field coils of low inductance

B || | Coil Specs:
_ * 6.45 m conductor, 9-strand, 0.8 mm strand
30 mm - Bi-2212 diameter from LBNL
Windings « 45 mm ID, 6 layers x 6 turns

voreryy) . \vyresrns * 2.78 kA (0.75%*Ic) at 16.64 T load-line,

* Self Field (1.97 T central field, 2.64 T peak on
conductor)

ffffffffffffffff

Coil scale-up options contingent upon successful tests - 9 strand cables

« 2-3Tadded (17 T total), 8 meter (existing cable) = “Baby-Ruth”

b6 Tadded (20 T total), 40 meter needed +back-up

* Possible Full-Scale: 100’s of meters for full volume

Baby Ruth (11-18 T added 25-30 T total). Major funding and large furnace required.
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Cable wound Bi-2212 coils haven’t achieved short sample |. yet

* Coil performance is limited by the weakest link

o This can include thermodynamic leakage, cabling effects, strain limits including local stress concentrations,
terminals, and quench degradation.

o Although, we know how to eliminate leakage, so how much of the gap will we gain back?

Baby-Ruth Test Solenoid Sub-scale Coils
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Many Leaks Observed: Could Not Apply Standard TiO, Process

* We have no cable coating route yet:
o Existing mullite braid removed from cable
o Coating painted and slid into braid by hand

o Cannot apply abrasion resistant top-coat on TiO,
without inline furnace

o Mullite braid installed by hand

* No leaks observed in the terminal region:
o  went through 50 bar OPHT w/out mullite or TiO,

* Moderate preference for cable edge leaks

o Removed braid from lead-in/out excess conductor pigtails

* Period of leaks is consistent with squeezing cable
to manipulate braid onto the cable

It is likely that installing the braid disrupted the TiO, causing
the cable to react with the mullite braid allowing for leakage

ASC has recently purchased a braider/wrapping device
on strand-based and Rutherford cable coils




Take-Away: Nat. Labs/Univ. Should Intelligently Damage Test Coils

“Intelligent Damage” requires careful postmortem analysis

We can eliminate leaks by removing interaction with mullite and gain
on the order of 15%

o TiO, and Al,O; are both known solutions but need to be implemented for cables

We have seen a marked difference between the 9-strand and 17-
strand cables
o Different twist pitch (longer distance away from edges)

There is a definite and reproducible effect from cabling on the
filament merging and strand shape. Braiding/wrapping

. . .. . Rutherford Cable at ASC
o Is it now time to optimize the architecture for cables?

The Bi-2212 Rutherford cables are very flexible for winding into a
variety of coil types and small diameters (solenoids, racetracks, CCTs,
cosine-theta magnets)
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 Unique large bore (161 mm), 12 T LTS, 7.2 kA [10 kA upgrade in-progress] test facility
* Rapidly test magnet designs and isolate phenomena

— Lowe-cycle fatigue test magnets in closer to final operating conditions

— Dedicated test articles: cables, joints, diagnostics and instrumentation...

— Validate design and modelling: mechanical reinforcement and constraints, current
sharing, screening, quench, etc..

 ASC has extensive postmortem investigation capabilities

— Material science experts and equipment, Yatestar (Reel-Reel tape evaluation),
light/SEM/TEM/MO microscopy capabilities (see Bi-2212 session Postmortem
investigation talk for examples)

 HEP and Fusion would benefit from a sustained testing program
 Smaller relative cost for conductor, engineering, and testing
* Take-Away: Nat. Labs/Univ. Should Intelligently Damage Test Coils
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Thanks to PPPL LDRD, DOE support, the MaglLab Core Grant support of NSF, and the State of Florida.
The work was supported by the National High Magnetic Field Laboratory’s National Science Foundation under Award DMR-1644779, the State of Florida, the U.S. DOE
Office of High Energy Physics under Award DE-SC001042, the DOE Office of Fusion Energy Sciences DE-SC0022011, the PPPL LDRD (Laboratory Directed Research and
Development) support for testing. Even in difficult times of critical helium shortages our colleagues came through for us to enable this timely testing. Thank you to
Irinel Chiorescu and his research group as well as the MaglLab cryogenic operations.
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