

PIP-II Integrated Model

BTL Workshop PIP-II CAD Team Curt Baffes, Tim Hamerla Nov 30, 2022

PIP-II is a partnership of:

US/DOE

India/DAE

Italy/INFN

UK/STFC-UKRI

France/CEA, CNRS/IN2P3

Poland/WUST

Outline

- Integrated Model Goals and Scope
- CAD Modeling Practices
- Data Exchange Techniques
- Current BTL Model Status
- Path to BTL Model Integration

3D CAD Model Integration - Goals

- Establish uniform CAD standards for PIP-II
 - Units, coordinate systems, conventions
 - Input from PIP-II partners via PIP-II Design Coordination Group
- Integrate 3D geometry for all technical designs (FNAL-performed and partner performed)
 - Dynamic in-process design context
 - Eventually authoritative documentation of these designs
- Integrate 3D geometry for Conventional Facility CF
 - as design context NOT as BIM or authoritative representation of CF
- Establish traceability from highest level (PIP-II) to lowest level (component detail design)
 - Drives need for data abstraction techniques
- Implement abstraction/visualization techniques to keep the model useable and manageable

3D CAD Model Integration - Scope

Integrated 3D CAD model is used to manage design for all of PIP-II

- Model captures:
 - Accelerator Physics lattice
 - Detailed individual 3D system designs
 - Partner designs
 - Simplified abstractions of detailed designs (where needed)
 - Not-to-exceed envelopes bounding designs
 - Conventional Facility (CF) designs from A&E firm
- Model integrates design geometry from multiple sources
 - FNAL designs implemented in Siemens NX® 1980 CAD software
 - Partner designs implemented in other systems (e.g., CEA CATIA®)
 - CF design implemented in Revit®
- Model is updated dynamically with maturing design
 - Initially critical systems defined by not-to-exceed envelopes which bound the designs
 - Elaborated with detailed 3D model designs as systems mature
 - CF designs verified via the 3D model

Outline

- Goals and Scope
- CAD Modeling Practices
- Data Exchange Techniques
- Current BTL Model Status
- Path to BTL Model Integration

PIP-II CAD Practices

- Defined in PIP-II document ED0009698
- Establishes modeling practices
 - Coordinate system definitions
 - Enables lattice-based model population
 - Unit convention: metric units
 - Facilitates international contributions
 - Mixed units greatly complicate data import/export in NX
 - Exceptions for CF-integrated systems (e.g. LCW piping)
 - Top-to-bottom assembly tree traceability implementation methods
 - Use of "Arrangement" feature in NX to control data suppression/display

Data Abstraction

- Simplification of complicated geometry and assemblies
 - Necessary at multiple levels to make visualization and drawings feasible
 - Managed in NX arrangements (controlling suppression state)
 - Default arrangement = Simple or Block

Not-To-Exceed Envelopes

- NTE envelopes are based on actual design or planned similar reasonably achievable designs
- They provide a boundary that a system must stay within to avoid interference with other equipment (constraints on system design)
- Allows for parallel progress and interface verification between systems at different levels of design maturity
- Formalized in a 2-D drawing, reviewed and approved by stakeholders, and controlled in Teamcenter

Developed from the PIP-II 3D model

NTE 2-D Drawing

PIP-II Tunnel Section

Assembly Tree Traceability

Cryomodule Representations

Full assembly tree traceability:

Detailed cryomodule design

Can drill down to low level (e.g. fasteners)

Difficult to display in higher-level assemblies

Model Integration Example

Outline

- Goals and Scope
- CAD Modeling Practices
- Data Exchange Techniques
- Current BTL Model Status
- Path to BTL Model Integration

3D CAD Model Data Exchange

Rigorous data exchange protocols utilized

Data Exchange with Accelerator Physics

- The Accelerator Physics (AP) team owns the lattices
 - Managed in Teamcenter ED0011224
 - Includes native files and .csv files readable in Excel
 - Excel file generates lattice CAD model via NX script

Data Exchange with Accelerator Physics

Data Exchange with Conventional Facilities

- The CF A&E firm works in Autodesk Revit ®
 - Not directly compatible with Siemens NX ®
 - Data exchange implemented in 3D DXF format
 - Data exchange from FNAL performed at CF design start and at significant design change stages
 - Data exchange from CF A&E firm performed at major design milestones (30, 60, 90, 100%) and as needed
 - Careful management of coordinate systems and non-standard survey units (survey ft) required
 - Model checked and verified after data exchange

Data Exchange with CF – Implementation Details

- Coordinate units and coordinate systems...
 - But do not rely solely upon that coordination for absolute position
 - CF designs can deal with vast length scales, but due to NX limitations the technical CAD model cannot

A note on units

- Basic Units
 - Metric: 1m
 - International inches: 0.0254000m
 - International foot: 12 international inches, 0.3048000m
 - Survey foot: 1200/3937m = .3048006096m
- Because FSCS coordinate system is centered far from the PIP-II site, 2ppm discrepancy between international feet and survey feet results in ~3" discrepancy at the PIP-II site
- Most technical CAD systems do not support "survey foot" units, but civil drawings typically use survey foot exclusively
- Care must be taken in converting between survey foot and international units.
 One must be clear on who converts

Outline

- Goals and Scope
- CAD Modeling Practices
- Data Exchange Techniques
- Current BTL Model Status
- Path to BTL Model Integration

BTL Model Status

- Conventional Facility
 - CF models implemented for both BTL construction packages
 - This includes CF-installed components (cable tray, fluids)
- Existing Booster
 - Based on 2020 3D scan of PIP-II Injection Region
- Beamline Components
 - Lattice driven beamline model in place
 - Detailed designs of collimators and absorber implemented
 - Notional representation of magnets based on dimensions provided by Meiqin/Bruce
 - Envelope for cavities based on dimensions provided by Eduard
 - No instrumentation geometry that we have been made aware of
- Other Components
 - No other geometry that we have been made aware of

CF – Complex Package

CF – Booster Connection Package

CF – Piping in work

Existing Booster 3D Scan

- For historical reasons, there is no integrated CAD model of the Booster in NX/Teamcenter
- We did a 3D scan of the PIP-II injection region in 2020
- Alignment fiducials are captured in scan and included in CAD model and allow for correct global positioning

Beamline - Lattice

Beamline – Mature Integration (BTL Collimators)

Beamline – Simplified Placeholder Integration (Magnets)

Beamline – Preliminary Envelope Integration (BTL Cavities)

Beamline – CSYS Integration (Injection Girder)

Components not currently represented/integrated

- Booster injection
- Instrumentation
- Vacuum
- Stands
- Anything/everything else

Outline

- Goals and Scope
- CAD Modeling Practices
- Data Exchange Techniques
- Current BTL Model Status
- Path to BTL Model Integration

Path to BTL Model Integration

- When should model integration happen?
 - As soon as you can define a coordinate system and location for a design
 - If you can provide a volume envelope, that's helpful also
 - The later integration happens, the more likely it becomes that we will have problems
- Next steps for hardware to be designed in the future
 - Interfacing parties can agree on volume envelopes
 - We can create these envelopes and placeholder assembly structure
 - These can facilitate specification development (e.g. for magnets)
 - Allows design-in-context from the beginning

Path to BTL Model Integration

Example of NTE envelopes used as interface specification

Path to BTL Model Integration

- Next steps for hardware already in design
 - Responsible engineers should make sure their models are integrated in the toplevel model
 - Responsible engineers/designers should use the top-level models to understand context, verify fit, and work issues

What LI CAD Team Will and Will Not Do

- LI CAD Team Will
 - Continue to implement lattice and CF files
 - Create appropriate assembly structures
 - Work with design teams to optimize loading and visualization
 - 2-way communication about model issues
 - we can create arrangements that you need
 - we can create component groups for visualization
- LI CAD Team Will Not
 - Drive envelopes and interfaces in the BTL/BAL/Booster
 - Systematically hunt down interferences and problems
 - Create geometry beyond simple placeholder geometry
 - Create interface or installation drawings for BTL/BAL/Booster components or systems
 - Some combination of owning, interfacing and installing L3s are responsible for all this

Questions/Discussion

