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The obvious III

4

Data Data-like

Calibration Detector simulationCalibration

Truth-like nu info 

from data

Truth-like nu info 

from simulation

Nu “truth”

from simulation 

• Two types of calibration:

1.Calibrating existing models — parameters, look-up tables, etc.


a. Detector independent (e.g recombination in LAr)

b. Run condition dependent (e.g electron lifetime)


2.Calibrating not modeled effect (“must” be measured)

• Calibration for data and simulation should be consistent

• The detector simulation should correspond to the measurement from the calibration process.


‣ Type 1a calibration may be extracted to improve fidelity of the simulation, but not directly 
applied on data (e.g charge diffusion)


‣ Sometimes Type 2 calibration is not implemented in the simulation
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Be aware of potential systematic associated to parts not accounted for in the simulation.



Type 1 calibration: modeled in the simulation
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Differentiable larnd-sim
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Differentiable larnd-sim status
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Ab kb eField

lifetimelong_difftran_diff

Simultaneously fit multiple parameters of the bulk LAr detector in the simulation 
from a noiseless closure test



Replacing visibility LUT with a SIREN model
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Patrick Tsang: Slides

• Will improve the use in simulation and calibration

• Not yet implemented in larnd-sim

https://indico.fnal.gov/event/57552/contributions/256458/attachments/162425/214685/2022-12-15%20SIREN%20Module-0%20Data.pdf
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Patrick Tsang: Slides

Inclusive light calibration with SIREN model

• Train a SIREN model from the LUT, and then 
calibrate it with data


• Build a SIREN model directly from the data

• Direct and inclusive (avoid propagating assumptions, a mix of Type 1 and 2 calibrations)

• Not to overcounting in systematics

• Used 6 days of anode-cathode crossing cosmic data (~680k tracks)

• In 2x2, calibration source: rock muons (topology)?

• How much data is reasonable?

Charge data

Light data

Light prediction

Multi-parameter optimisation 

https://indico.fnal.gov/event/57552/contributions/256458/attachments/162425/214685/2022-12-15%20SIREN%20Module-0%20Data.pdf


Inspiration for induced current response
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• [Simulation] Replace the induced current LUT with a SIREN-like model?

• [Calibration] include in the calibration scheme of differentiable larnd-sim? 

Otherwise, how to have a clean breakup from the inclusiveness



Relevant Type 1 calibration in 2x2
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Electric field variation 

13

Top

Bottom

SideSide

DR8

Cathode

XC

• Input HV is fixed all four modules

• This input HV shared by the filter resistor and field shell

• The sheet resistance of DR8 (field shell material) can vary ~100%

• This will lead to cathode voltage variation



Drift speed
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• If the drift speed is not calibrated according to the actual electric field, 
the readout TPC shape may distort in drift direction


• The drift speed modeled from the electric field and the measured 
maximum drift time is not constrained by the cathode position

‣ Cold detector size

‣ Electric field deformation
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Charge lifetime
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• Could be a noticeable effect of charge attenuation if not corrected

• Well defined procedure for charge deposition with known T0

• Verify the consistency between two TPCs in a module and between modules

• Calibration source in 2x2: 


‣ [charge-light matching] cosmic? 

‣ [beam] neutrino induced charge (rock muons, in-detector interactions)?


• Data size

Module 0

Module 1

Lane Kashur



Recombination
• Birks or Box: theoretically inspired phenomenologically recombination expression

• ICARUS 3t: muons and protons, 3 electric fields (0.2, 0.35, 0.5 kV/cm)

• ArgonNEUT: protons, 1 electric field (0.5 kV/cm), track angle dependence study

• MicroBooNE: protons, 1 electric field (0.5 kV/cm)

• Module 0: cosmic muons, detailed electric field scan between 0-1 kV/cm, fixed dE/dx
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Saba Parsa



Type 2 calibration: not (yet) modeled effect
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• Relative module positioning (ICARUS, protoDUNE) including MINERvA

• Detailed electric field mostly for charge positioning

• Fiducial volume uncertainty?

• Readout uniformity

• GPS time matching between systems (LAr-charge, LAr-light, MINERvA)

• Trigger efficiency in terms of position

• Trigger time (beam) 2x2 PACMAN implementation


‣ Not in-time charge deposition

✦ Coincident cosmics



Module-to-Module Positioning
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Using “straight” muon tracks 

Correct modules to a common reference frame



Detailed electric field
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• Observed maximum position displacement ~1 cm 

‣ Close to the light detectors

‣ Close to the cathode


• To be investigated: TPC to TPC variation

• Would it be the same in 2x2?

• Time stability (beam dependent?) and data size

• Trivial impact on recombination, and therefore the calorimetric output

Dan Douglas



Readout performance and uniformity
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• Readout performance: data-simulation

• Readout uniformity (x, y, z)


‣ Inclusive uniformity map?

• To-be investigated (quoting Peter’s slides)


‣ Channel-to-channel gain variation (~5%)

‣ Digital-analog cross talk (dQ/dx distribution in the tail)


• Alternative noise modeling improved readout dQ/dx performance

Peter Madigan: Slides

https://indico.fnal.gov/event/56492/contributions/251906/attachments/160433/211371/2022-10-6-Single-pixel%20dQ_dx%20with%20Module%200%20data.pdf


Energy Calibration/Correction
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Zach Hulcher

• To account for particle energy loss in TPC gaps (known source) 

• “Smearing matrix” all inclusive flattened response

• Position, angle, energy dependent for particles of interest

• Reconstruction and particle identification required

• Do we need all these dimensions? 


• Might be statistics dependent (analysis dependent)

• Intrinsic fluctuation in energy deposition

Charged pions 

0.25’’ G10, ND-LAr geometry



Do not introduce a calibration 

that you cannot improve upon the prior resolution or systematics



Readout uniformity
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Peter Madigan

10 cm near the cathode 10 cm near the anode

Single pixel dQ/dx uniformity



High voltage filter
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