

2x2 Calibration Status and Plans

Kevin Wood, <u>kwood@lbl.gov</u> January 19, 2023 2x2 Analysis Workshop, University of Bern

- The "flow framework" for processing and calibrating 2x2 data
 - Focus on charge readout
- Data formats
- What effects do we aim to calibrate out?
- What samples can we use to this end?

2x2 Analysis Workshop - January 2023

2x2 Calibration Overview

- 2x2 calibration routines will be handled by a dedicated "flow" framework
- Based off module0 flow, developed by P. Madigan
- Currently working on branch: ۲ refactor/restructure-for-ndlar-flow that will extend the repo for use on different geometries/detector setups
- 2x2 code is found under proto nd flow subdirectories

BERKELEY LAB

3

Flow Overview

- Built on top of <u>h5flow</u> (also developed by Peter) for efficient handling of data
- Read and writes to HDF5 files
- Various groups for different types of information
- proto_nd_flow modules are written to process and calibrate the raw (h5) packets

- In [1]: import h5py
 flow_out_h5 = h5py.File('/home/kwood/research/dune/2x2/data/simulation_ch
- In [2]: flow_out_h5.keys()
- In [3]: flow_out_h5['charge'].keys()
- In [4]: flow_out_h5['/charge/calib_prompt_hits'].keys()
- Out[4]: <KeysViewHDF5 ['data', 'ref']>
- In [5]: flow_out_h5['/charge/calib_prompt_hits/data'].dtype

Flow Overview - references

- <u>h5flow</u> also has mechanisms in place to establish references between datasets
 - E.g. between charge/calib_prompt_hits and charge/events *
 - E.g. for truth matching in simulation files
 - E.g. for associating hit level information back to the full packet
- (See h5flow README.md for more details)

- In [2]: event_hits = flow_out_h5flow['charge/events','charge/calib_prompt_hits']

Data Processing - Charge

Calibrated Dataset Format

- There will be designated 'calib_hits' dataset from running low level reconstruction and full the suite of calibration on raw data
- A generic calibration dataset has the same hit-level datatype structure:
 - x [mm] reconstructed/calibrated x position
 - y [mm] reconstructed/calibrated y position
 - z [mm] reconstructed/calibrated z position
 - Q [ke-] reconstructed/calibrated integrated charge
 - E [MeV] reconstructed/calibrated energy
 - t_drift [ns] reconstructed drift time
 - t_pps [ticks] when the charge arrived on the pixel

Light Information

- Not currently in the simulation challenge file
- module0_flow has modules for handling light information that we can use as a starting point
 - Raw waveforms
 - ~90% of the file size from single module operations (?)
 - Hits
 - SiPM level vs. detector level
 - Currently the latter where sipms on the same light detector are summed (after noise filtering, signal deconvolution) before hit finding
 - Keeping the same structure as the charge hits is possible, but x,y,z information has a different interpretation

Truth Information (simulation)

- At the moment there are handles for associating packets and hits to the GEANT truth information
 - Segments information on the energy depositions from final state particles
 - Trajectories description of the final state particles themselves
- Still need to put in the association back to the GENIE event record
 - Trivial to include, but there is a question about how much information we want to carry along in these files
 - Option 1) copy the entire GENIE stack in these files
 - Option 2) use metadata cataloguing to retain the association between these files and the corresponding GENIE files
 - Personal opinion: something in between keep enough information for event reconstruction to benchmark their algorithms, but maybe not enough, e.g., for eventual systematic development

What to Calibrate for?

- (Discussion)
- Beyond naive expectation from simulation, data driven
- Channel-to-channel gain variation
- 2. Electric field non-uniformity
- 3. Space charge (?)
- 4. Detector distortion
- 5. Run conditions

BERKELEY LAB

6

·····

What samples to use?

(Discussion)

BERKELEY LAB

- Rock muons will be plenty
 - Subsamples from selecting, e.g., anode-cathode crossing tracks
- Fewer cosmics, but will be useful to have vertical oriented tracks in addition to the predominantly horizontal rock muons
- Stopping muons will be fewer still, but Michel spectra would be a good validation, especially if we could bin by position in the detector
- Ar39? Requires very low thresholds

Single pixel statistics

P. Madigan

Sample Collection

- How often do we collect these samples?
- Self triggering system
 - If we have activity in the detector, we will read it out and save it
- How long does it take to acquire the requisite statistics?
- Matt Kramer is standing up an efficient spill simulation that will be informative here
- Connections with DQM

LAr Calibration Summary

- Status
 - proto_nd_flow for
 processing and calibrating
 low level data from 2x2
 - Naive ADC→MeV calibration
 based on simulation in place
 - Data driven calibration to be developed
 - Sample simulation file with 5
 NuMI spills available

- Plans
 - Finalize light and truth datasets
 - Efficient spill simulation with rock muons included
 - Develop data driven calibration modules
 - Collect data!

