
Plans and readiness for 2x2 MC at NERSC

Matt Kramer, LBNL

2x2 analysis workshop, Bern
Jan 20 2023

2

Context
● 2x2 + MINERvA in NuMI beam soon, expect ~5E20 POT

(~1yr @ 50% uptime)
● Need 10X MC statistics, for both FHC and RHC

– 20 * 5E20 = 1E22 POT simulated
● Goal is to quickly produce this sample at NERSC (Perlmutter

GPU+CPU), make it available for analysis
● For both MC and data, also need calibration and

reconstruction (flow, mlreco, Pandora)
● This talk is an update since the last talk the last talk

https://indico.fnal.gov/event/56927/
https://indico.fnal.gov/event/57560/contributions/256384/attachments/162380/214618/2022_12_14_2x2SimProcStatus.pdf

3

High-level workflow

FHC or RHC

Input params

flux file ID Random seed
g4NuMI dk2nu files copied from FNAL

GENIE

Direct beam events edep-sim
file

larnd-sim

larnd-sim
file

Tape

Disk

Pre-gen
sample

Spill builder

Indirect
(rock) beam
events

Cosmics?

MUSIC/Corsika?
Pre-gen?

edep-sim LAr recos

4

Detailed workflow
GENIE

2x2 + MINERvA
no rock

nu
gtrac

GENIE
just rock

in-rock
gtrac

“hacked”
edep-sim

in-rock
edep

extract/
convertfrom-rock

gtrac

spill builder

spill
gtrac

edep-sim

edep

dumpTree

edep
.h5

larnd-sim

packets

flow
calib/recoflow

mlreco

Pandora

MINERvA
sim/reco

cosmic
gtrac?

Rectangles = code, ellipses = data, gray = one-time, black = every spill

5

Production management: Fireworks
● Fireworks: Workflow software, widely used at NERSC

– Python, YAML, MongoDB; flexible and easy to understand
● DB stores:

– Configurations (code versions, environment vars, paths, ...)
– Job parameters (FHC/RHC, flux file ID, random seed)
– Records of completed (sub)jobs, failed jobs, etc.

● Worker (launched through Slurm) pulls items from DB, processes them. 6 subjobs => 6
workers
– GENIE+edep-sim worker (CPU)
– larnd-sim worker (GPU)
– flow worker (MPI CPU)
– mlreco worker (GPU)
– Pandora worker (CPU)
– MINERvA worker (CPU)

Data flow through workers (i.e.
subjob dependencies) defined
through directed acyclic graph (DAG)

6

Reproducibility
● Must be able to exactly reproduce simulated output based solely

on job configuration in DB
● Configuration includes git commit hash of prod script repository

– FireWorks worker verifies that the commit matches before launching
scripts, aborts if mismatched

● All software packaged in containers
● Production scripts store the hashes of all required containers,

verified at runtime
● Container-building scripts deterministic and under git control

– Useful extra: Mapping of git commits to container hashes (potential
headache-saver)

7

Future-proofing
● Desire to eventually harmonize production management with

the tools used in the broader DUNE ecosystem
– Precluded now by time constraints, urgency of this sample
– Conversation started with ND sim/reco group

● Keep FireWorks-specific (Python) code to the bare minimum; as
much as possible lives inside Bash scripts whose only
“dependencies” are environment variables
– Should make it “easy” to move the scripts to another production

system (e.g. POMS, data-dispatcher)
● FireWorks DB data format is simple and intuitive; Mongo

(JSON) → SQL mapping should be straightforward

8

Calibration and reconstruction
● flow to provide calibrated hits (for mlreco, Pandora...) as well as basic track-level

reconstruction
● mlreco

– Inference and training run without complaints on Perlmutter GPUs
– Historically used edep-sim energy deposits
– SLAC progressing in using LArPix hdf5 format, e.g. from larnd-sim

● Pandora
– Uses CPUs, should work on Perlmutter, hasn’t been tested(?)
– Recent progress from Pandora team in consuming larnd-sim output directly

● MINERvA
– Gaudi-based sim/reco (CPU); Geant4 wrapper replaced with edep-sim reader (Nöe/Tammy)
– Working on running at NERSC

● Will need “realtime” reco on data (at least flow) in order to e.g. implement certain DQ plots
● See Kevin’s talk on the “calibrated” data format (output by flow) for use by mlreco and Pandora

9

Rock events (“done”)
● Run GENIE on stripped-down geometry (just rock + empty hall)
● Run edep-sim on GENIE vertices, save all trajectories that

enter hall
– “Hacked” edep-sim to remove requirement of energy deposits in

sensitive volumes
● Extract trajectories into “spoofed” GENIE file for use by spill

builder
– One “event” may contain trajectories originating from multiple points;

cannot(?) store as a single GENIE event, instead store “blocks” of
“subevents”

10

Cosmic events?
● Cosmic rate in cavern is ~2 Hz / m2; comparable rate in 2x2
● Spill window is ~10 μs
● So, not something we need to worry about (right?)

11

Spill builder (in progress)
● Take expected # (per spill) of direct beam events, indirect (rock)

beam events, cosmic events
● For each spill, Poisson fluctuate above to generate # of each
● Use spill structure to generate random times for beam events
● Use uniform distribution to generate times for cosmics
● Draw direct beam events sequentially from job’s GENIE file
● Draw indirect beam events randomly from pregenerated sample

– How big of a sample do we need?
– Apply fluctuations to positions, directions, energies?

● Sort by times, merge into single GENIE file for use by edep-sim

12

Metadata, cataloging, replication
● Working on MetaCat installation at NERSC

– “Exercise” by filling with singlecube run metadata
– For simulation, copy job configuration+params from FireWorks DB
– For 2x2 data, to contain run configuration, conditions, calibrations,

etc. (replicated w/ FNAL?)
● Desirable: NERSC as a DUNE Rucio storage element

– Enables automatic replication of MC from NERSC to FNAL, data
from FNAL to NERSC

– Automates tracking of locations on disk/tape

13

Projected compute/storage requirements
● What do we expect when including rock events?

14

Production timeline
● Full LAr chain (at least up to flow), including rock and cosmics:

Aim to have ready mid-Feb
– Main remaining action items: Finish spill building; cosmics; ensure

reproducibility; MetaCat
– mlreco, Pandora, MINERvA may take longer

● Once at that point, plan to generate a 1%-scale test sample
(~1E20 POT)
– Verify projections of compute/storage requirements
– Run various analyses for validation (volunteers needed!)

● Once everything looks good, proceed at full scale

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

