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CAF-making

In this talk I'm focusing on the CAF-making pathway.
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How is babby CAF formed?

The ND CAFMaker writes out CAFs.

This is a shared tool amongst all ND groups and LBL
(originally built by LBL for FD TDR,

and has somehow become my problem responsibility?)

https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
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What is a “CAF”?
● CAFs are input to LBL analysis

– “Common Analysis Files,” which are ROOT format trees based on custom 
StandardRecord object  (more on that shortly)

– Contain summaries of events: higher-level reconstructed objects & truth information
● Goal: fast iteration in analysis.  (More propaganda at arXiv:2203.13768)

● CAFs are intended to have low barrier-to-entry and be easy to use
– I showed an example νμ CC energy estimator based on the ML reco reconstruction, with 

accompanying “howto”, in Dec. 2021
– The TMS group has demonstrated matching ND-LAr to TMS with CAFs as well

https://arxiv.org/abs/2203.13768
https://indico.fnal.gov/event/52169/
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What is a “CAF”?
● CAFs are input to LBL analysis

– “Common Analysis Files,” which are ROOT format trees based on custom 
StandardRecord object

– Contain summaries of events: higher-level reconstructed objects & truth information
● Goal: fast iteration in analysis.  (More propaganda at arXiv:2203.13768)

● CAFs are intended to have low barrier-to-entry and be easy to use
– I showed an example νμ CC energy estimator based on the ML reco reconstruction, with 

accompanying “howto”, in Dec. 2021
– The TMS group has demonstrated matching ND-LAr to TMS with CAFs as well

where is this utopia??

https://arxiv.org/abs/2203.13768
https://indico.fnal.gov/event/52169/
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Problem #1:
file format handshaking
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FLOWCHARTS?

[https://what-if.xkcd.com/13/]

To explain problem #1:

https://what-if.xkcd.com/13/
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Problem #1: file format handshaking

GENIE 
.ghep.root

edep-sim 
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

LArSoft 
.lar.root

larnd-sim 
.h5

LArCV
.larcv.root

Pandora reco
.?.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

TMS reco
.tmsreco.root

TMS sim
.?.root

SAND reco
.?.root

SAND sim
.?.root

“full ND” edition

CAF
.caf.root

≥12 (!!) separate file handshakes

larpix data
.h5

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx
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Problem #1: file format handshaking

GENIE 
.ghep.root

edep-sim 
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

larnd-sim 
.h5

LArCV
.larcv.root

Pandora reco
.?.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

MINERvA reco
.?.root

MINERvA sim
.?.root

2x2 edition:
● Eliminate larsoft
● Remove TMS, SAND
● Add MINERvA

CAF
.caf.root

≥8 separate file handshakes...
larpix data

.h5

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx
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Problem #1: file format handshaking

GENIE 
.ghep.root

edep-sim 
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

larnd-sim 
.h5

LArCV
.larcv.root

art
.art.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

MINERvA reco
.?.root

MINERvA sim
.?.root

2x2 edition...?

Maybe you noticed all the 
lines converging here

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx
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Problem #1: file format handshaking

The ND CAFMaker synthesizes
all these inputs together and writes out CAFs.

It's a “framework-less” (standalone) C++ tool that only 
“natively” depends on fhicl-cpp (configuration format) 

and duneanaobj (output format – more momentarily)

https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
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Problem #1: file format handshaking

ND CAFMaker has a “pluggable” architecture 
that simplifies adding new reco 

“branch fillers”.

It actually works ok!

https://github.com/DUNE/ND_CAFMaker
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Problem #1: file format handshaking

However...

Library dependencies required to read all the 
input formats (ROOT, hdf5, GENIE, edep-sim...) 

make building the CAFMaker a chore

[Problem #1a]
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Problem #1: file format handshaking

Another big problem (Problem #1b) here is “ownership”:
who is supposed to sign off on changes
proposed by any of the providers of inputs

(ND-LAr, 2x2/MINERvA, SAND, TMS)?
(and tag releases, coordinate w/ production, ...)

Right now, it's just ... me, plus whoever else I can get to pay attention

→ needs well-delineated responsibilities/succession plan
(depends on sufficient expertise!)

https://github.com/DUNE/ND_CAFMaker
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Problem #2:
output & usage
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Problem #2: output & usage

⋮

⋮

CAFs contain a series of 
StandardRecord objects

(one per event)

Though they're currently a mess 
(problem #2.5, I guess), the vision is for 
them to be organized hierarchically so 
info is easy for the uninitiated to find & 

understand.  (ND branches are!)

https://internal.dunescience.org/doxygen/classcaf_1_1StandardRecord.html
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Problem #2: output & usage

⋮

⋮

The StandardRecord format is defined 
in (yet another) DUNE GitHub 
repository called duneanaobj

https://github.com/DUNE/duneanaobj
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Problem #2: output & usage

Modifying duneanaobj is absurdly 
complicated!

(and JW is single point of failure in 
several places      )

Approximate workflow for adding / 
modifying variables:

1.Check out repository, make new branch
2.Make desired changes
3.Discover you can't build it,

random walk through people & Slack channels you 
know until somebody says “ask Jeremy”

→ JW tells you you need to build 
on a dunegpvm with UPS set up because ... reasons 

4.Check out ND_CAFMaker
5.Make desired changes (to fill new vars)
6.Discover that ND_CAFMaker build system is very 

fragile. Ask Jeremy why it doesn't work
→ JW tells you that your default gpvm setup probably sets up 
something incompatible

7.Discover that no matter how hard you try 
ND_CAFMaker always gets duneanaobj from UPS 
instead of your edits.  Ask Jeremy again
→ JW tells you you need an elaborate setup where you make a UPS 
package in your local /dune/app area and use that

8.Finally make a test CAF, fix your bugs, etc.
9.Make pull requests to ND_CAFMaker, duneanaobj 

with your changes
10. Try to get people to review your PRs.  Eventually JW 

gets sufficiently fed up that he unilaterally rubber-
stamps them (see Problem #1b)

11. Wait until Tom Junk and Lynne Garren have time to 
build & install a new release of duneanaobj

12. Profit ...?

Problem #2:

[the complexity of the workflow + single-point-of-failure
has inhibited development in TMS, SAND

as well as Pandora CAF integration...]

https://github.com/DUNE/duneanaobj
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Problem #2: output & usage

Modifying duneanaobj is absurdly 
complicated!

(and JW is single point of failure in 
several places      )

Problem #2:

[the complexity of the workflow + single-point-of-failure
has inhibited development in TMS, SAND

as well as Pandora CAF integration...]

The major reason for all this is because UPS is 
the main dependency manager for 

ND_CAFMaker right now.

Maybe we need a proper ND_CAFMaker build 
system that can get dependencies from UPS 
for its “batteries-included” Production version,

 but doesn't have to 
(and can operate without all the dependencies for 
input formats if they're not available, for testing)

https://github.com/DUNE/duneanaobj
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Problem #2: output & usage

● Possible ingredients for addressing problem #2:
– Document the steps on previous page better

● I'm going to try to do this during working time today
– Clean up ND_CAFMaker dependency & build system.

Add limited-functionality, “UPS-free” build paths for 
duneanaobj and ND_CAFMaker for testing purposes?

● Requires some CMake know-how
● Dependencies of ND_CAFMaker are nontrivial

– Designate responsible parties for approving PRs
– Build more expertise (will be needed to get production 

workflow fully integrated anyways)
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And now for...

[more of the same]
... four consecutive walls of text
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What does all this buy us? (I)
● Reading CAFs requires only ROOT and duneanaobj, 

no “frameworks”
– Straightforward HEP analysis without extensive art, h5py, or other 

“domain-specific” experience
● ND_CAFMaker is already set up to integrate multiple 

datastreams
– Should be straightforward to adapt for “2x2 + MINERvA” use case

● Some CAFMakers (there's a draft PR for ND_CAFMaker) can also 
emit “flat” CAFs:
– Flat ROOT trees that have hierarchical organization but don't require 

duneanaobj to read them
– CAFAna (see next slide) can rebuild StandardRecords from FlatCAFs on-

the-fly, completely invisibly, using  SRProxy – so you still access them via 
the hierarchical organization

– Read times are (anecdotally) competitive with HDF5
– Could also use Pythonized tools like Uproot to read into numpy arrays

https://github.com/DUNE/ND_CAFMaker/pull/13
https://github.com/cafana/SRProxy
https://github.com/scikit-hep/uproot5
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● CAFs (whether “flat” or not) work naturally with CAFAna 
(LBL's toolkit from TDR era), clean-simple-and-fast C++ analysis 
framework
– e.g.: make ~30 plots, fit, and evaluate an entire νμ CC energy estimator 

in 4 pretty-easy-to-read C++ files of ~200 lines each (see the .C files 
here) → the entire macro set for the ND-LAr reco APS talk I gave last 
year

● n.b.: Not trying to “code golf” here.  Just an example of what can be done with 
~minimal effort.

– Simplicity means fewer mistakes, quick analysis turnaround, etc.
– If ROOT fits your comfort level, learning curve is pretty shallow
– There's also a Python interface if that's more your thing, though it's not 

super “pythonic”
● LBL folks need CAFs to do oscillation analysis studies for ND 

TDR timeline, so exercising the pathway here helps us all 
anyway

What does all this buy us? (II)

https://github.com/chenel/dune-nd-lar-reco/tree/main/cafana
https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=24902


25

What do we need for 2x2?
● Pathway using ML-reco is already established (most mature)

– Uses unofficial code I wrote to run the reco & “summarize” tracks & showers... 
needs to be re-homed into an official DUNE repo

– May want to replace the above with more official tools from DeepLearnPhysics, but 
probably not on (beginning of) 2x2 timescale

● Need to work with Pandora folks to make sure Pandora reco output is 
integrated into CAFs
– They encountered some of the roadblocks I mentioned previously...

● Track matching code for TMS can probably be adapted for MINERvA 
matching at first, but needs a champion
– Long-term plan is to integrate MINERvA reco natively into reco rather than 

happening post facto...
● Current CAFs only have charge info.  We could include a “Flash” data 

product/summary, but needs a champion
– Introduces an extra interconnection, too, if light info isn't in the same (.h5) file as 

the charge

https://github.com/chenel/dune-nd-lar-reco


26

What do we need for the future?
● The StandardRecord needs a thorough cleanup

– Want to fully “hierarchalize” the arrangement and eliminate the unreadable 
dumping-ground that the top level currently is

– Needs to be heavily coordinated w/ LBL
● Consider rewriting ND_CAFMaker using some supported framework 

that streamlines Production workflows (art?)
– Probably requires a month or two from someone who likes frameworky 

projects [not JW]
– c.f. discussion with M. Kirby yesterday

● ND Sim/Reco should manage CAF format and CAF-maker since 
coordination among all ND users, LBL will be important
– I expect that proposed additions to the CAF format (both from ND and FD!) 

will be frequent over the next few years
– Need to develop streamlined process for reviewing/accepting/versioning
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