
CAFs & analysis

2x2 workshop
University of Bern

Jan. 21, 2023

Jeremy Wolcott
Tufts University

A knotty path

MASTBAUM
DIAGRAM

CAF-making

In this talk I'm focusing on the CAF-making pathway.

4

How is babby CAF formed?

The ND CAFMaker writes out CAFs.

This is a shared tool amongst all ND groups and LBL
(originally built by LBL for FD TDR,

and has somehow become my problem responsibility?)

https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker

5

What is a “CAF”?
● CAFs are input to LBL analysis

– “Common Analysis Files,” which are ROOT format trees based on custom
StandardRecord object (more on that shortly)

– Contain summaries of events: higher-level reconstructed objects & truth information
● Goal: fast iteration in analysis. (More propaganda at arXiv:2203.13768)

● CAFs are intended to have low barrier-to-entry and be easy to use
– I showed an example νμ CC energy estimator based on the ML reco reconstruction, with

accompanying “howto”, in Dec. 2021
– The TMS group has demonstrated matching ND-LAr to TMS with CAFs as well

https://arxiv.org/abs/2203.13768
https://indico.fnal.gov/event/52169/

6

What is a “CAF”?
● CAFs are input to LBL analysis

– “Common Analysis Files,” which are ROOT format trees based on custom
StandardRecord object

– Contain summaries of events: higher-level reconstructed objects & truth information
● Goal: fast iteration in analysis. (More propaganda at arXiv:2203.13768)

● CAFs are intended to have low barrier-to-entry and be easy to use
– I showed an example νμ CC energy estimator based on the ML reco reconstruction, with

accompanying “howto”, in Dec. 2021
– The TMS group has demonstrated matching ND-LAr to TMS with CAFs as well

where is this utopia??

https://arxiv.org/abs/2203.13768
https://indico.fnal.gov/event/52169/

7

Problem #1:
file format handshaking

8

FLOWCHARTS?

[https://what-if.xkcd.com/13/]

To explain problem #1:

https://what-if.xkcd.com/13/

9

Problem #1: file format handshaking

GENIE
.ghep.root

edep-sim
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

LArSoft
.lar.root

larnd-sim
.h5

LArCV
.larcv.root

Pandora reco
.?.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

TMS reco
.tmsreco.root

TMS sim
.?.root

SAND reco
.?.root

SAND sim
.?.root

“full ND” edition

CAF
.caf.root

≥12 (!!) separate file handshakes

larpix data
.h5

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx

10

Problem #1: file format handshaking

GENIE
.ghep.root

edep-sim
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

larnd-sim
.h5

LArCV
.larcv.root

Pandora reco
.?.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

MINERvA reco
.?.root

MINERvA sim
.?.root

2x2 edition:
● Eliminate larsoft
● Remove TMS, SAND
● Add MINERvA

CAF
.caf.root

≥8 separate file handshakes...
larpix data

.h5

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx

11

Problem #1: file format handshaking

GENIE
.ghep.root

edep-sim
.edep.root

CAF
.caf.root

MLReco
“summary”

.summary.h5

makeCAF
(ND_CAFMaker)

larnd-sim
.h5

LArCV
.larcv.root

art
.art.root(?)

[Pandora reco]

[DeepLearnPhysics reco]

MINERvA reco
.?.root

MINERvA sim
.?.root

2x2 edition...?

Maybe you noticed all the
lines converging here

https://github.com/DUNE/ND_CAFMaker/blob/master/makeCAF.cxx

12

Problem #1: file format handshaking

The ND CAFMaker synthesizes
all these inputs together and writes out CAFs.

It's a “framework-less” (standalone) C++ tool that only
“natively” depends on fhicl-cpp (configuration format)

and duneanaobj (output format – more momentarily)

https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker
https://github.com/DUNE/ND_CAFMaker

13

Problem #1: file format handshaking

ND CAFMaker has a “pluggable” architecture
that simplifies adding new reco

“branch fillers”.

It actually works ok!

https://github.com/DUNE/ND_CAFMaker

14

Problem #1: file format handshaking

However...

Library dependencies required to read all the
input formats (ROOT, hdf5, GENIE, edep-sim...)

make building the CAFMaker a chore

[Problem #1a]

15

Problem #1: file format handshaking

Another big problem (Problem #1b) here is “ownership”:
who is supposed to sign off on changes
proposed by any of the providers of inputs

(ND-LAr, 2x2/MINERvA, SAND, TMS)?
(and tag releases, coordinate w/ production, ...)

Right now, it's just ... me, plus whoever else I can get to pay attention

→ needs well-delineated responsibilities/succession plan
(depends on sufficient expertise!)

https://github.com/DUNE/ND_CAFMaker

16

Problem #2:
output & usage

17

Problem #2: output & usage

⋮

⋮

CAFs contain a series of
StandardRecord objects

(one per event)

Though they're currently a mess
(problem #2.5, I guess), the vision is for
them to be organized hierarchically so
info is easy for the uninitiated to find &

understand. (ND branches are!)

https://internal.dunescience.org/doxygen/classcaf_1_1StandardRecord.html

18

Problem #2: output & usage

⋮

⋮

The StandardRecord format is defined
in (yet another) DUNE GitHub
repository called duneanaobj

https://github.com/DUNE/duneanaobj

19

Problem #2: output & usage

Modifying duneanaobj is absurdly
complicated!

(and JW is single point of failure in
several places)

Approximate workflow for adding /
modifying variables:

1.Check out repository, make new branch
2.Make desired changes
3.Discover you can't build it,

random walk through people & Slack channels you
know until somebody says “ask Jeremy”

→ JW tells you you need to build
on a dunegpvm with UPS set up because ... reasons

4.Check out ND_CAFMaker
5.Make desired changes (to fill new vars)
6.Discover that ND_CAFMaker build system is very

fragile. Ask Jeremy why it doesn't work
→ JW tells you that your default gpvm setup probably sets up
something incompatible

7.Discover that no matter how hard you try
ND_CAFMaker always gets duneanaobj from UPS
instead of your edits. Ask Jeremy again
→ JW tells you you need an elaborate setup where you make a UPS
package in your local /dune/app area and use that

8.Finally make a test CAF, fix your bugs, etc.
9.Make pull requests to ND_CAFMaker, duneanaobj

with your changes
10. Try to get people to review your PRs. Eventually JW

gets sufficiently fed up that he unilaterally rubber-
stamps them (see Problem #1b)

11. Wait until Tom Junk and Lynne Garren have time to
build & install a new release of duneanaobj

12. Profit ...?

Problem #2:

[the complexity of the workflow + single-point-of-failure
has inhibited development in TMS, SAND

as well as Pandora CAF integration...]

https://github.com/DUNE/duneanaobj

20

Problem #2: output & usage

Modifying duneanaobj is absurdly
complicated!

(and JW is single point of failure in
several places)

Problem #2:

[the complexity of the workflow + single-point-of-failure
has inhibited development in TMS, SAND

as well as Pandora CAF integration...]

The major reason for all this is because UPS is
the main dependency manager for

ND_CAFMaker right now.

Maybe we need a proper ND_CAFMaker build
system that can get dependencies from UPS
for its “batteries-included” Production version,

 but doesn't have to
(and can operate without all the dependencies for
input formats if they're not available, for testing)

https://github.com/DUNE/duneanaobj

21

Problem #2: output & usage

● Possible ingredients for addressing problem #2:
– Document the steps on previous page better

● I'm going to try to do this during working time today
– Clean up ND_CAFMaker dependency & build system.

Add limited-functionality, “UPS-free” build paths for
duneanaobj and ND_CAFMaker for testing purposes?

● Requires some CMake know-how
● Dependencies of ND_CAFMaker are nontrivial

– Designate responsible parties for approving PRs
– Build more expertise (will be needed to get production

workflow fully integrated anyways)

22

And now for...

[more of the same]
... four consecutive walls of text

23

What does all this buy us? (I)
● Reading CAFs requires only ROOT and duneanaobj,

no “frameworks”
– Straightforward HEP analysis without extensive art, h5py, or other

“domain-specific” experience
● ND_CAFMaker is already set up to integrate multiple

datastreams
– Should be straightforward to adapt for “2x2 + MINERvA” use case

● Some CAFMakers (there's a draft PR for ND_CAFMaker) can also
emit “flat” CAFs:
– Flat ROOT trees that have hierarchical organization but don't require

duneanaobj to read them
– CAFAna (see next slide) can rebuild StandardRecords from FlatCAFs on-

the-fly, completely invisibly, using SRProxy – so you still access them via
the hierarchical organization

– Read times are (anecdotally) competitive with HDF5
– Could also use Pythonized tools like Uproot to read into numpy arrays

https://github.com/DUNE/ND_CAFMaker/pull/13
https://github.com/cafana/SRProxy
https://github.com/scikit-hep/uproot5

24

● CAFs (whether “flat” or not) work naturally with CAFAna
(LBL's toolkit from TDR era), clean-simple-and-fast C++ analysis
framework
– e.g.: make ~30 plots, fit, and evaluate an entire νμ CC energy estimator

in 4 pretty-easy-to-read C++ files of ~200 lines each (see the .C files
here) → the entire macro set for the ND-LAr reco APS talk I gave last
year

● n.b.: Not trying to “code golf” here. Just an example of what can be done with
~minimal effort.

– Simplicity means fewer mistakes, quick analysis turnaround, etc.
– If ROOT fits your comfort level, learning curve is pretty shallow
– There's also a Python interface if that's more your thing, though it's not

super “pythonic”
● LBL folks need CAFs to do oscillation analysis studies for ND

TDR timeline, so exercising the pathway here helps us all
anyway

What does all this buy us? (II)

https://github.com/chenel/dune-nd-lar-reco/tree/main/cafana
https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=24902

25

What do we need for 2x2?
● Pathway using ML-reco is already established (most mature)

– Uses unofficial code I wrote to run the reco & “summarize” tracks & showers...
needs to be re-homed into an official DUNE repo

– May want to replace the above with more official tools from DeepLearnPhysics, but
probably not on (beginning of) 2x2 timescale

● Need to work with Pandora folks to make sure Pandora reco output is
integrated into CAFs
– They encountered some of the roadblocks I mentioned previously...

● Track matching code for TMS can probably be adapted for MINERvA
matching at first, but needs a champion
– Long-term plan is to integrate MINERvA reco natively into reco rather than

happening post facto...
● Current CAFs only have charge info. We could include a “Flash” data

product/summary, but needs a champion
– Introduces an extra interconnection, too, if light info isn't in the same (.h5) file as

the charge

https://github.com/chenel/dune-nd-lar-reco

26

What do we need for the future?
● The StandardRecord needs a thorough cleanup

– Want to fully “hierarchalize” the arrangement and eliminate the unreadable
dumping-ground that the top level currently is

– Needs to be heavily coordinated w/ LBL
● Consider rewriting ND_CAFMaker using some supported framework

that streamlines Production workflows (art?)
– Probably requires a month or two from someone who likes frameworky

projects [not JW]
– c.f. discussion with M. Kirby yesterday

● ND Sim/Reco should manage CAF format and CAF-maker since
coordination among all ND users, LBL will be important
– I expect that proposed additions to the CAF format (both from ND and FD!)

will be frequent over the next few years
– Need to develop streamlined process for reviewing/accepting/versioning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

