

Neutrinos from Stored Muons nSTORM

n physics with a µ storage ring

The "Collaboration"

P. Kyberd,¹ D.R. Smith,¹ L. Coney,² S. Pascoli,³ C. Ankenbrandt,⁴ S.J. Brice,⁴ A.D. Bross,⁴ H. Cease,⁴ J. Kopp,⁴ N. Mokhov,⁴ J. Morfin,⁴ D. Neufer,⁴ M. Popovic,⁴ P. Rubinov,⁴ S. Striganov,⁴ A. Blondel,⁵ A. Bravar,⁵ E. Noah,⁵ R. Bayes,⁶ F.J.P. Soler,⁶ A. Dobbs,⁷ K. Long,⁷ J. Pasternak,⁷ E. Santos,⁷ M.O. Wascko,⁷ S.K. Agarwalla,⁸ S.A. Bogacz,⁹ Y. Mori,¹⁰ J.B. Lagrange,¹⁰ A. de Gouvêa,¹¹ Y. Kuno,¹² A. Sato,¹²

V. Blackmore,¹³ J. Cobb,¹³ C. D. Tunnell,¹³ J.M. Link,¹⁴ P. Huber,¹⁴ and W. Winter¹⁵

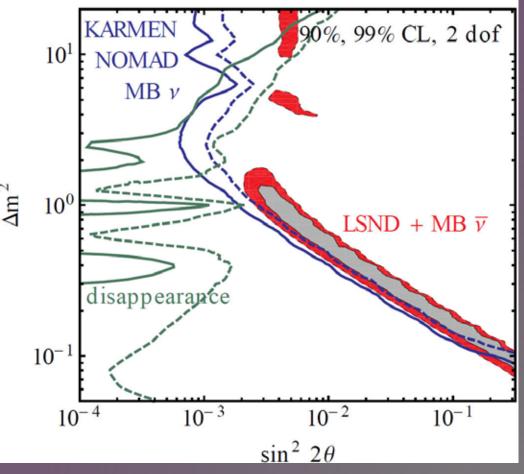
 ¹Brunel University, ²University of California, Riverside,
 ³I nstitute for Particle Physics Phenomenology, Durham University
 ⁴Fermi National Accelerator Laboratory, ⁵University of Geneva
 ⁶University of Glasgow, ⁷I mperial College London, ⁸I nstituto de Fisica Corpuscular, CSIC and Universidad de Valencia, ⁹Thomas Jefferson National Accelerator Facility, ¹⁰Kyoto University,
 ¹¹Northwestern University, ¹²Osaka University, ¹³Oxford University, Subdepartment of Particle Physics, ¹⁴Center for Neutrino Physics, Virginia Polytechnic Institute and State University

¹⁵Institut für theoretische Physik und Astrophysik, Universität Würzburg

Motivation

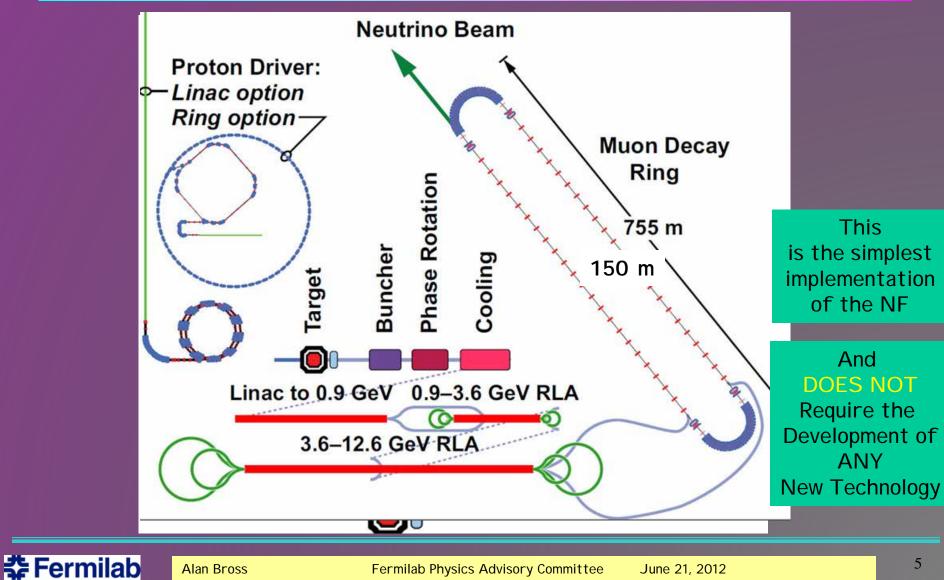
The idea of using a muon storage ring to produce neutrino beams for experiments is not new

- ø 50 GeV beam Koshkarev @ CERN in 1974
- ø 1 GeV Neuffer in 1980


The facility/program I will describe here can:

- Address the large Dm² oscillation regime and make a major contribution to the study of sterile neutrinos
 - ø Either allow for precision study, if they exist in this regime
 - Ø Or greatly expand the dis-allowed region
- ø Make precision n_e and n_e -bar cross-section measurements
- Provide a technology test demonstration (mdecay ring) and m beam diagnostics test bed
- ø Provide a precisely understood n beam for detector studies

Short-baseline n oscillation studies


- Sterile neutrinos arise naturally in many extensions of the Standard Model.
 - ø GUT models
 - Seesaw mechanism for n mass
 - Cosmological models of evolution of early universe
 - ø "Dark" sector
- S Experimental hints
 - ø LSND
 - ø MiniBooNE
 - ø Reactor "anomaly"

Global constraints on sterile n in a 3+1 model

🛟 Fermilab

vSTORM

Fermilab Physics Advisory Committee

June 21, 2012

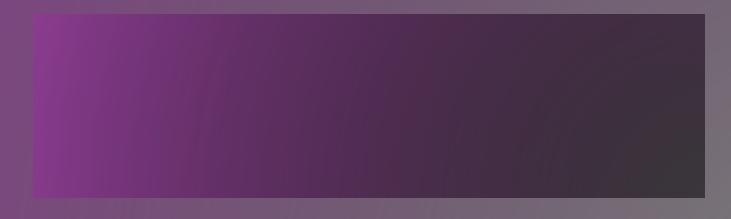
mbased n beams

Well-understood neutrino source: $m^{\dagger} \otimes e^{+} \overline{n}_{m} n_{e}$ μ Decay Ring: $m \otimes e^{-} n_{m} \overline{n}_{e}$

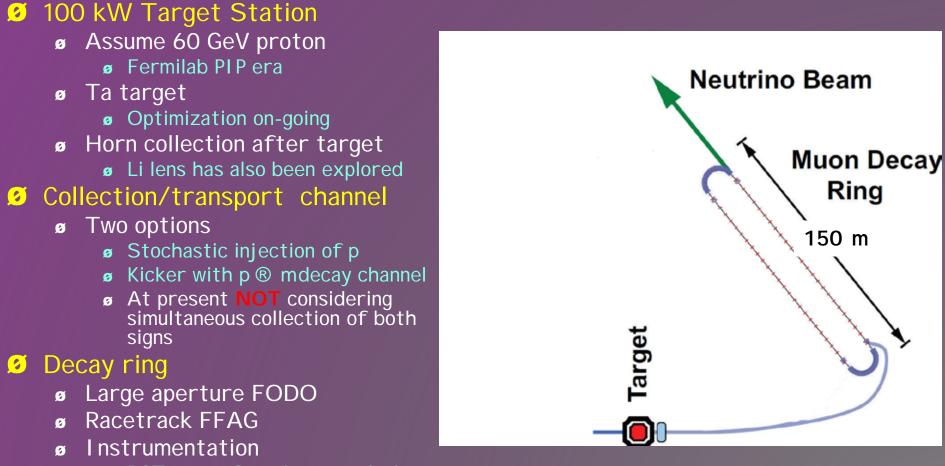
Flavor content fully known

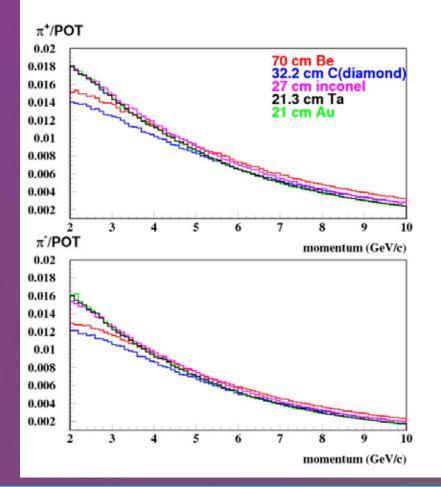
- *In the second s*
 - Beam current, polarization, beam divergence monitor, m spectrometer
- Overall, there is tremendous control of systematic uncertainties with a well designed system

Oscillation channels


μ^+ –	$\rightarrow e^+ \nu_e \overline{\nu}_\mu$	$\mu^- \to e^- \overline{\nu}_e \nu_\mu$	
$\overline{ u}_{\mu}$	$\rightarrow \bar{\nu}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$	disappearance
$\overline{ u}_{\mu}$	$\to \bar{\nu}_e$	$ u_{\mu} \rightarrow \nu_{e} $	appearance (challenging)
$\overline{ u}_{\mu}$	$\rightarrow \bar{\nu}_{\tau}$	$ u_{\mu} \rightarrow \nu_{\tau} $	appearance (atm. oscillation)
ν_e	$\rightarrow \nu_e$	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	disappearance
ν_e	$ ightarrow u_{\mu}$	$ar{ u}_e ightarrow ar{ u}_\mu$	appearance: "golden" channel
ν_e	$\rightarrow \nu_{\tau}$	$\bar{\nu}_e \to \bar{\nu}_\tau$	appearance: "silver" channel

8 out of 12 channels potentially accessible


The Facility


vSTORM

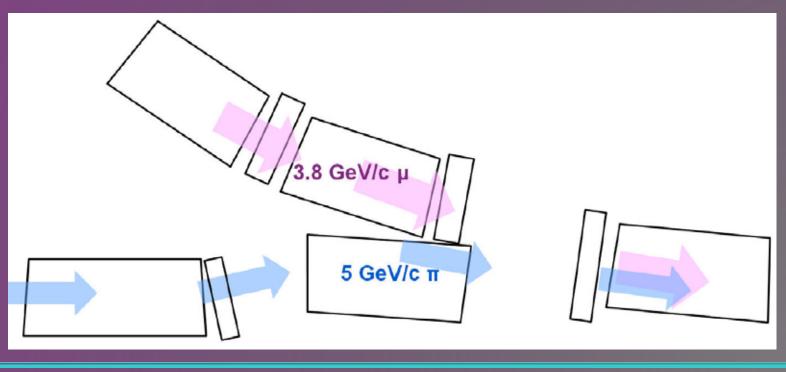
Baseline(s)

ø BCTs, mag-Spec in arc, polarimeter

p production

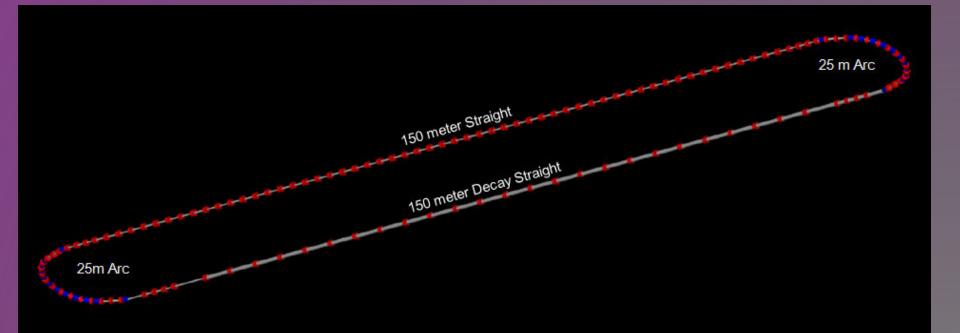
I n momentum range 4.5 < 5.0 < 5.5 Obtain » 0.11 p[±]/pot with 60 GeV p

Target/capture optimization ongoing


辈 Fermilab

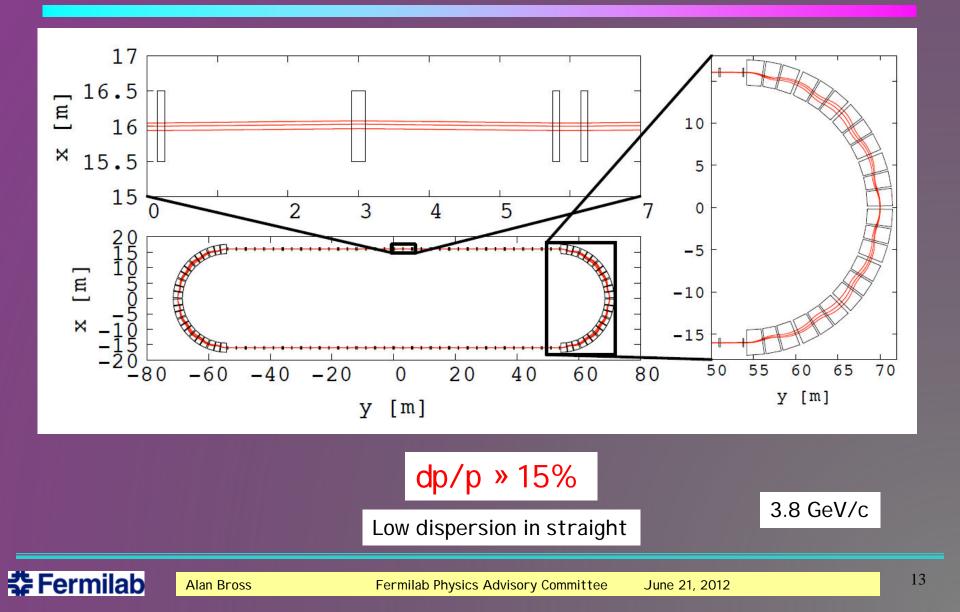
STORM

vSTORM

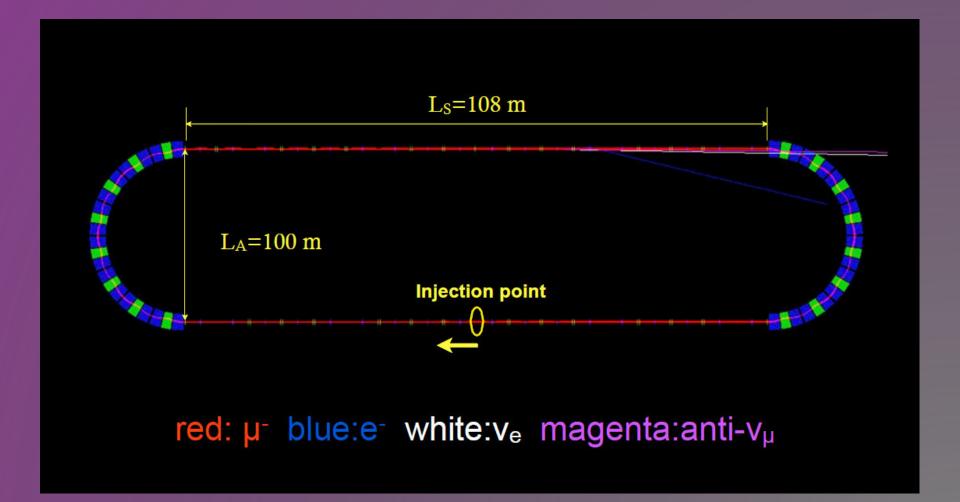

- $\boldsymbol{\varnothing}$ π 's are in injection orbit
 - separated by chicane
- **9** μ's are in ring circulating orbit
 - lower energy ~3.8 GeV/c Ø
- ~30cm separation between

Concept works for FODO lattice \bigcirc Work in progress for RFFAG

FODO Decay ring

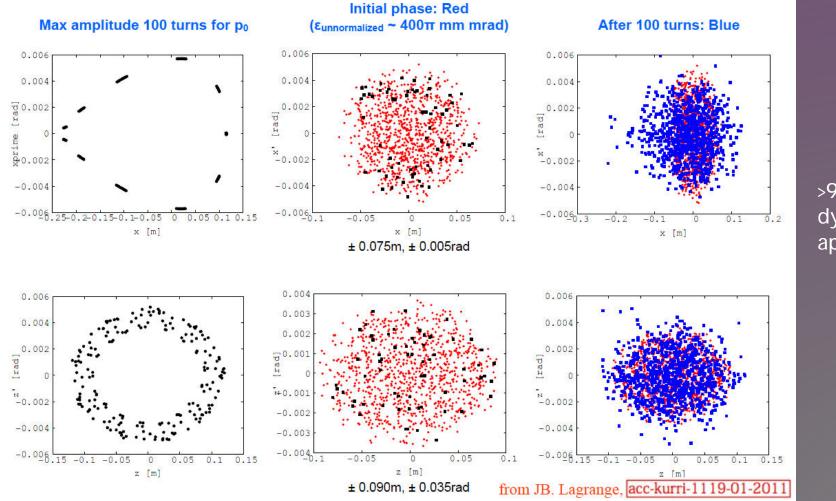


3.8 GeV/c \pm 10% momentum acceptance, circumference = 350 m



FFAG Racetrack

RFFAG Tracking Studies



Alan Bross

Fermilab Physics Advisory Committee June 21, 2012

FFAG Tracking

>90% dynamic aperture

vSTORM

Alan Bross

Fermilab Physics Advisory Committee June 21, 2012

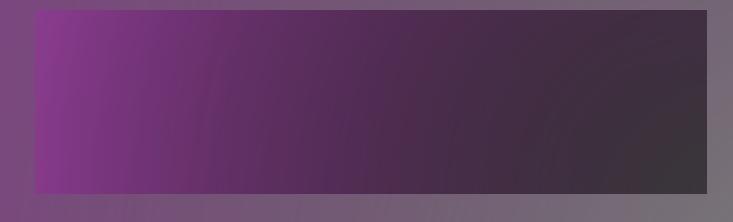

FODO vs. RFFAG

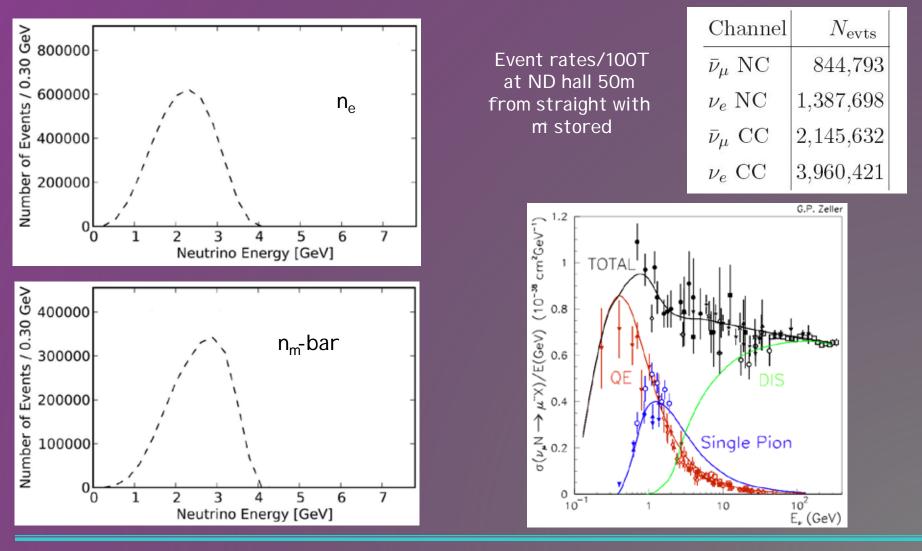
Table II. Relative μ yield for FODO vs. RFFAG rings

Parameter	FODO	RFFAG
$ L_{straight} (m) $	150	240
Circumference (m)	350	606
Dynamic aperture A_{dyn}	0.7	0.95
Momentum acceptance	$\pm 10\%$	$\pm 16\%$
π/POT within momentum acceptance	0.112	0.171
Fraction of π decaying in straight (F _s)	0.41	0.57
Ratio of $L_{straight}$ to ring circumference (Ω)	.43	.40
Relative factor $(A_{dyn} \times \pi/POT \times F_s \times \Omega)$	0.014	0.037

The Physics Reach

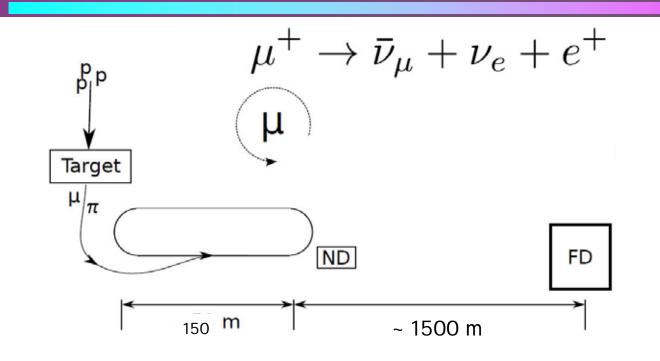
Assumptions

N_m = (POT) X (p/POT) X e_{collection} X e_{inj} X (mp) X A_{dynamic} X W
 10²¹ POT in 5 years of running @ 60 GeV in Fermilab PIP era
 0.1 p/POT (FODO)


- σ e_{collection} = 0.8
- ø e_{inj} = 0.8
- ø mp = 0.08 (gct X mcapture in p ® mdecay) [p decay in straight]

ø Might do better with a p ® mdecay channel

- ø $A_{dynamic} = 0.75$ (FODO)
- ø W= Straight/circumference ratio (0.43) (FODO)
- **1.7** X 10¹⁸ useful mdecays


E_n spectra (<mark>m</mark> stored)

🛟 Fermilab

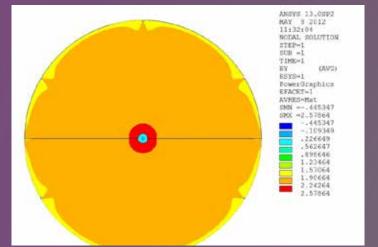
Experimental Layout

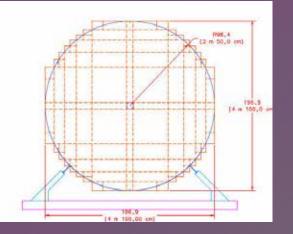
Appearance Channel: N_e ® N_m *Golden Channel*

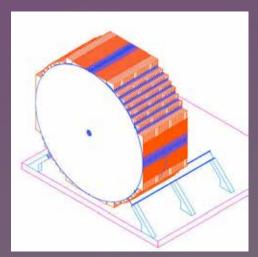
Must reject the "wrong" sign mwith great efficiency

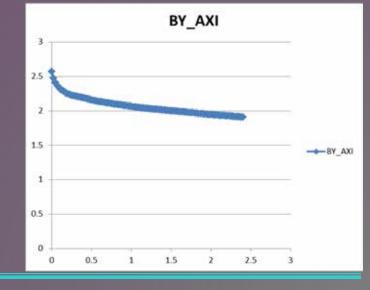
Why n_m® n_e Appearance Ch. not possible

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$


vstorm Baseline Detector Super B I ron Neutrino Detector: SuperBIND

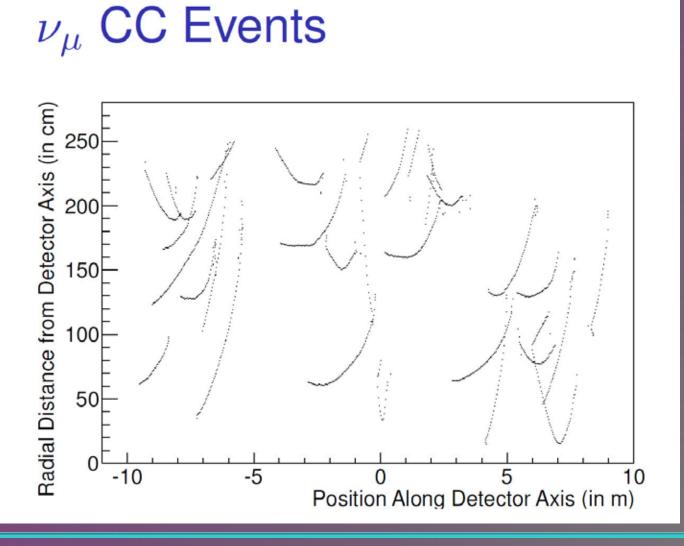

Magnetized I ron


ø 1.3 kT


- Following MINOS ND ME design
- ø 1-2 cm Fe plate
- ø 5 m diameter
- Utilize superconducting transmission line for excitation
 - Developed 10 years ago for VLHC
- Extruded scintillator
 +SiPM

20 cm hole For 3 turns of STL

June 21, 2012

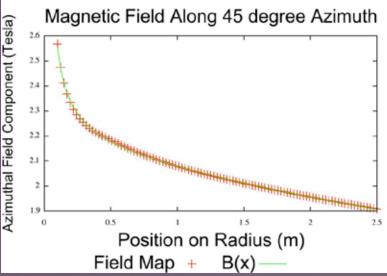

🛟 Fermilab

Alan Bross

Fermilab Physics Advisory Committee

Event Candidates in SuperBIND

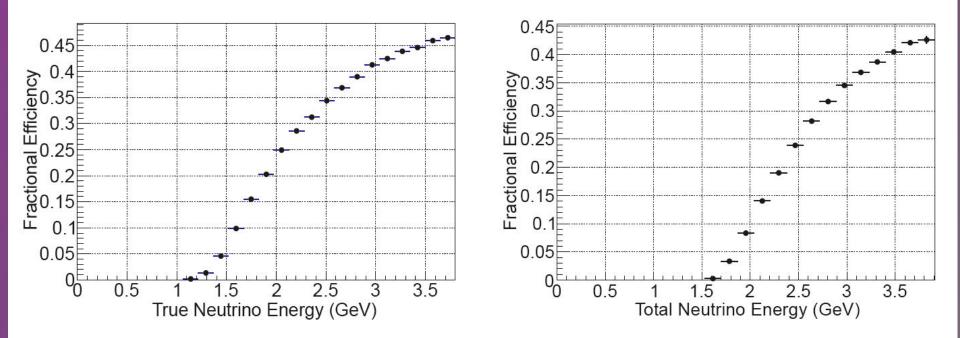
Hits R vs. Z


辈 Fermilab

Simulation – n_m appearance

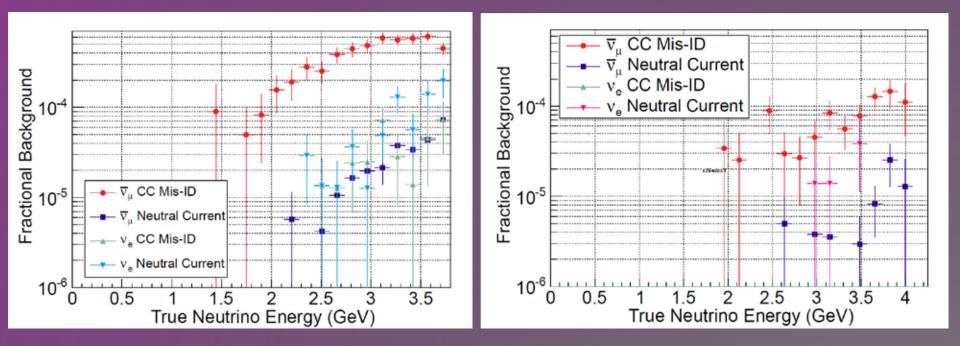
Full GEANT4 Simulation

- Extrapolation from ISS and IDS-NF studies for the MIND detector
- Uses GENIE to generate the neutrino interactions.
- Involves a flexible geometry that allows the dimensions of the detector to be altered easily (for optimization purposes, for example).
- Does not yet have the detailed B field, but parameterized fit is very good
- ø Event selection/cuts
 - Cuts-based analysis
 - ø Multivariate to come later



Event Cut	Description
Successful Reconstruction	Failed Kalman reconstruction of event removed
Fiducial	First hit of event is more than 1 m from end of detector
Maximum Momentum	Muon momentum less than $1.6 \times E_{\nu}$
Fitted Proportion	60% of track nodes used in final fit.
Track Quality	$\log(P(\sigma_{q/p}/(q/p) CC)/P(\sigma_{q/p}/(q/p) NC)) > -0.5$
NC Rejection (1 cm plates)	$\log(P(N_{hit} CC)/P(N_{hit} NC)) > 6.5$

Event reconstruction efficiency


Left: 1 cm plates,

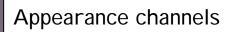
Right: 2 cm plates

Backgrounds

Left: 1 cm plates

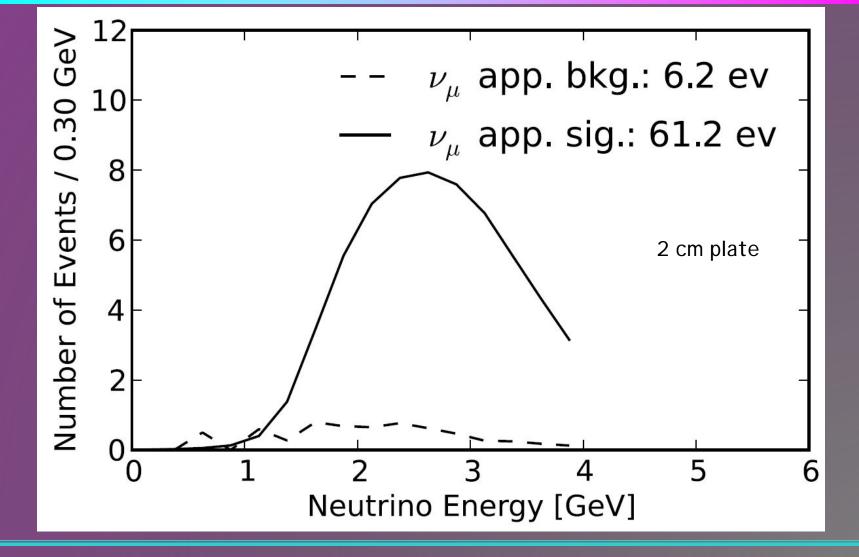
Right: 2 cm plates

Raw Event Rates


Neutrino mode with stored μ^+ .

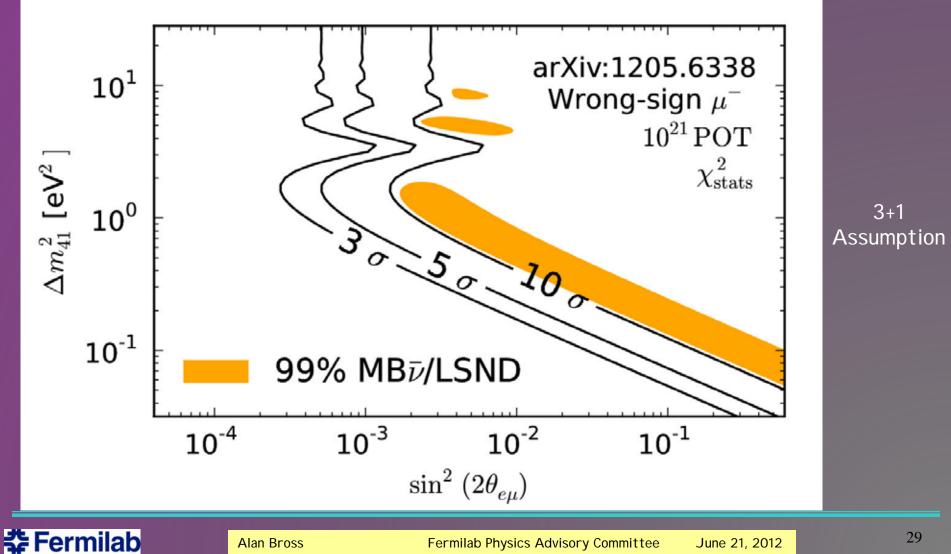
Channel	$N_{\rm osc.}$	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \ {\rm CC}$	332	0	∞	∞
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \ NC$	47679	50073	-4.8%	-10.7
$\nu_e \rightarrow \nu_e ~{\rm NC}$	73941	78805	-6.2%	-17.3
$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ CC$	122322	128433	-4.8%	-17.1
$\nu_e \to \nu_e \ {\rm CC}$	216657	230766	-6.1%	-29.4

Anti-neutrino mode with stored μ^- .


Channel	$N_{\rm osc.}$	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\bar{\nu}_e \rightarrow \bar{\nu}_\mu \ \mathrm{CC}$	117	0	∞	∞
$\bar{\nu}_e \rightarrow \bar{\nu}_e \ \mathrm{NC}$	30511	32481	-6.1%	-10.9
$\nu_{\mu} \rightarrow \nu_{\mu} \text{ NC}$	66037	69420	-4.9%	-12.8
$\bar{\nu}_e \rightarrow \bar{\nu}_e~{\rm CC}$	77600	82589	-6.0%	-17.4
$\nu_{\mu} \rightarrow \nu_{\mu} \ CC$	197284	207274	-4.8%	-21.9

3+1 Assumption

n_e® n_mappearance CPT invariant channel to MiniBooNE

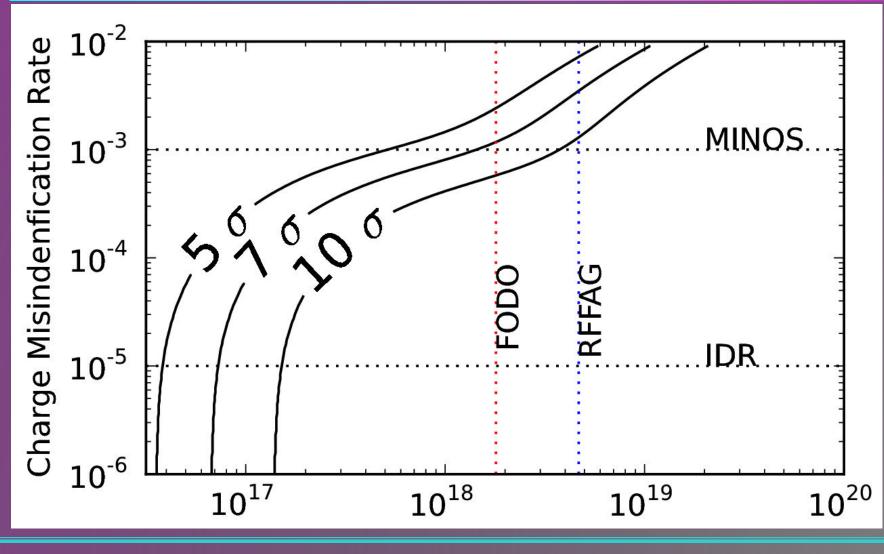


‡ Fermilab

Alan Bross

Fermilab Physics Advisory Committee June 21, 2012

vSTORM


Fermilab Physics Advisory Committee

Alan Bross

June 21, 2012

Required mcharge mis-ID rate needed for given sensitivity

Disappearance Experiments

Raw Event Rates

Neutrino mode with stored μ^+ .

Channel	$N_{\rm osc.}$	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \ {\rm CC}$	332	0	∞	∞
$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \text{ NC}$	47679	50073	-4.8%	-10.7
$\nu_e \rightarrow \nu_e ~{\rm NC}$	73941	78805	-6.2%	-17.3
$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ \mathrm{CC}$	122322	128433	-4.8%	-17.1
$\nu_e \rightarrow \nu_e~{\rm CC}$	216657	230766	-6.1%	-29.4

Anti-neutrino mode with stored μ^- .

Channel	$N_{\rm osc.}$	N_{null}	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\bar{\nu}_e \rightarrow \bar{\nu}_\mu \ \mathrm{CC}$	117	0	∞	∞
$\bar{\nu}_e \rightarrow \bar{\nu}_e \ \mathrm{NC}$	30511	32481	-6.1%	-10.9
$\nu_{\mu} \rightarrow \nu_{\mu} \text{ NC}$	66037	69420	-4.9%	-12.8
$\bar{\nu}_e \rightarrow \bar{\nu}_e~{\rm CC}$	77600	82589	-6.0%	-17.4
$\nu_{\mu} \rightarrow \nu_{\mu} \ CC$	197284	207274	-4.8%	-21.9

3+1 Assumption

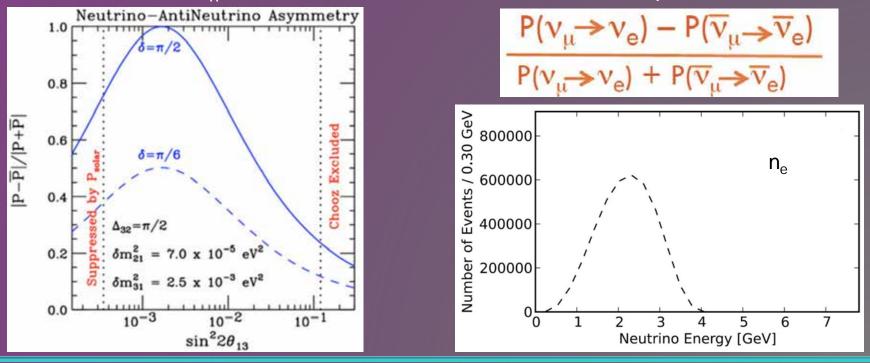
Tremendous Statistical Significance

Appearance channels

But:

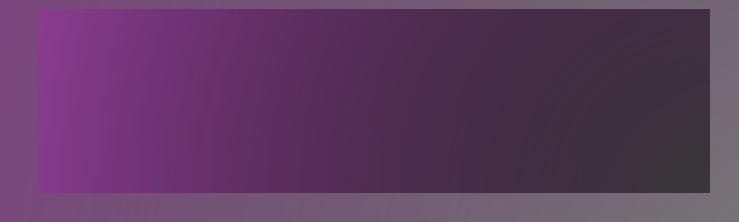
- Need self-consistent two-detector simulation including (bin-to-bin) uncorrelated shape error ~ 10%
- A challenge: there may be oscillations already in near detectors
- Geometry important for Dm² ~ 10¹ 10³ eV²
 Suitability (& optimization) of SuperBIND for n_e channels still needs to be studied

Cross-Section Measurements



Cross-section measurements

- **s** mstorage ring presents only way to measure $n_m \& n_e \& (n \text{ and } \overline{n}) x$ -sections in same experiment
 - ø Supports future long-baseline experiments


 $\mathcal{S}E_n$ matched well to needs of these experiments

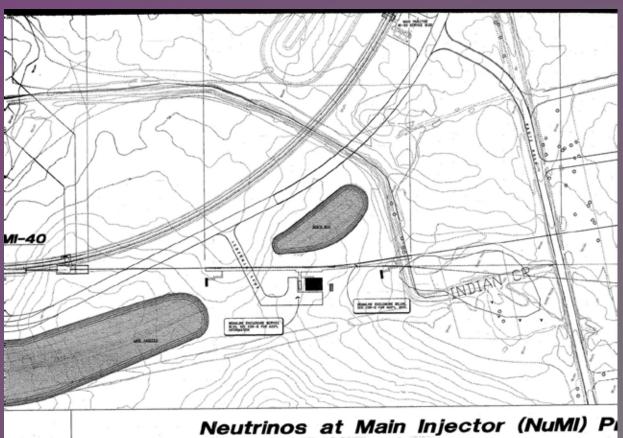
🛟 Fermilab

Project Considerations

ØPPD

 It is understood that LBNE may not proceed with near detector hall in Phase I. However, we believe that regardless of the final decision regarding the ND in LBNE Phase I, studies/simulation will occur and they will be synergistic with the needs of nSTORM

ØAD


 We agree that APO is not appropriate and this option is dropped. I will address the siting plan next.

Siting


- The favored concept is to follow the plan that was developed for the NuMI Project (no not that one) – SBL MI -40, short BL n_t (1994).
- Utilize MI abort line

Siting Concept

🛟 Fermilab

Alan Bross

A Perfect nSTORM?

- S LAr1 in D0 pit
- SuperBIND fits in the D0 high bay
- n_m beam (fr. p decay, Turn 1)
- Modecay n beam

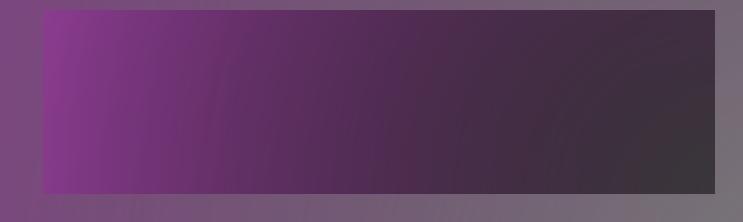
 $\mu^{+} \rightarrow e^{+} \overline{\nu}_{\mu} \nu_{e}$ $\mu^{-} \rightarrow e^{-} \nu_{\mu} \overline{\nu}_{e}$

With 40k evts/ton add small LAr detector at near hall in addition to the 1-200T of SuperBIND

Ø n_m appearance in SuperBIND Inmand ne disappearance in both SuperBIND & LAR n_e appearance in LAr from n_m from p decay 7 Upgrade – magnetize the LAr Ø n_m appearance LAr \mathcal{O} n_e appearance (from n_m \mathbb{R} n_e) in LAr ?

Major Components

- ø Beamline, Target Station & Horn
- ø Transport line
- ø Decay ring
- ø Detectors (Far & Near)
- ø Project Office
- ø Total


Basis of Estimation (BOE)

 Took existing facilities (MiniBooNE beam line and target station, MI NOS detector, vetted magnet costing models, m2e civil construction costs, EuroNu detector costing, have added all cost loading factors and have escalated to 2012 \$ when necessary.

\$30M
9
54
18
15
\$126M

Moving Forward

Moving forward:

Facility

- Targeting, capture/transport & Injection
 - Need to complete detailed design and simulation
- ø Decay Ring optimization
 - Continued study of both RFFAG & FODO decay rings
- Decay Ring Instrumentation
 - Define and simulate performance of BCT, polarimeter, Magneticspectrometer, etc.
- Produce full G4Beamline simulation of all of the above to define n flux
 - And verify the precision to which it can be determined.

Moving forward:

Ø Detector simulation

- For oscillation studies, continue MC study of backgrounds & systematics
 - Start study of disappearance channels
- In particular the event classification in the reconstruction needs optimization.

 - Plan to assign hits to and fit multiple tracks.
 - ø Vertex definition must also be improved.
 - ø Multivariate analysis.
- For cross-section measurements need detector baseline design
 - ø Learn much from detector work for LBNE & IDS-NF
 - $\ensuremath{\mathnormal{\textit{\scriptsize O}}}$ Increased emphasis on $n_{\rm e}$ interactions, however

Produce Full Proposal

Estimate effort to produce full proposal

Table X. Estimated effort to produce full proposal

Task	ΣFTE
Target Station	0.75
Capture & transport	1.25
Injection	0.25
Decay ring	2
Far Detector (Engineering)	1
Far Detector (Sim & Analysis)	2
Near Detector (Engineering)	1
Near Detector (Sim & Analysis) ^a	3.5
Costing	1
Total	12.75

‡ Fermilab

Alan Bross

nSTORM: Conclusions

The Physics case:

- Initial simulation work indicates that a L/E » 1 oscillation experiment using a muon storage ring can confirm/exclude at 10s (CPT invariant channel) the LSND/MiniBooNE result
- Inmand (ne) disappearance experiments delivering at the <1% level look to be doable</p>
 - Systematics need careful analysis
 - Detailed simulation work on these channels has not yet started
 - ø Detector implications?
- Cross section measurements with near detector(s) offer a unique opportunity

The Facility:

- Presents very manageable extrapolations from existing technology
 - But can explore new ideas regarding beam optics and instrumentation
- Offers opportunities for extensions
 - Add RF for bunching/acceleration/phase space manipulation
 - Provide msource for 6D cooling experiment with intense pulsed beam

The Detector:

- Is based on demonstrated technology and follows engineering principles from existing detectors
 - Technology extrapolations (scintillator readout) are perfectly aligned with development work within Fermilab's existing program (m2e)
 - Magnetization is based on technology that was fully vetted over 10 years ago
 - ø But has been in a dormant state

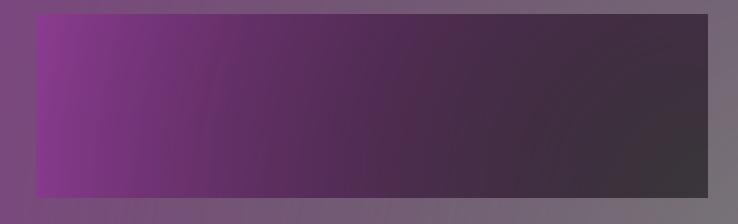
nSTORM :

Delivers on the physics for the study of sterile n

- Ø Offering a new approach to the production of n beams setting a 10 s benchmark to confirm/exclude LSND/MiniBooNE
- Can add significantly to our knowledge of n cross-sections, particularly for n_e interactions
- Provides an accelerator technology test bed
- Provides a powerful n detector test facility

Of the 30+ concepts that have recently been discussed in the literature to search for/study sterile neutrinos, nSTORM is the only one that can do all of the following:

- Make a direct test of the LSND and MiniBooNE anomalies.
- Provide stringent constraints for both n_e and n_m disappearance to over constrain 3+N oscillation models and to test the Gallium and reactor anomalies directly.
- Test the CP- and T-conjugated channels as well, in order to obtain the relevant clues for the underlying physics model, such as CP violation in 3 + 2 models.

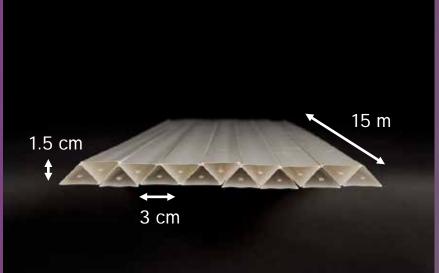

END

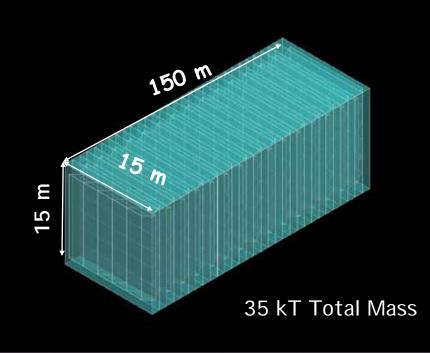
Back Ups

Detector Considerations

Other options

- ø Totally Active Scintillator TASD
- ø LAr
- Present opportunity to measure n_e appearance?
- Must be Magnetized, however

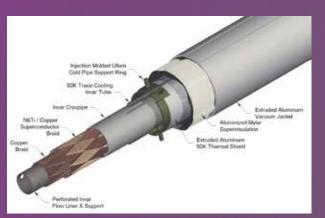




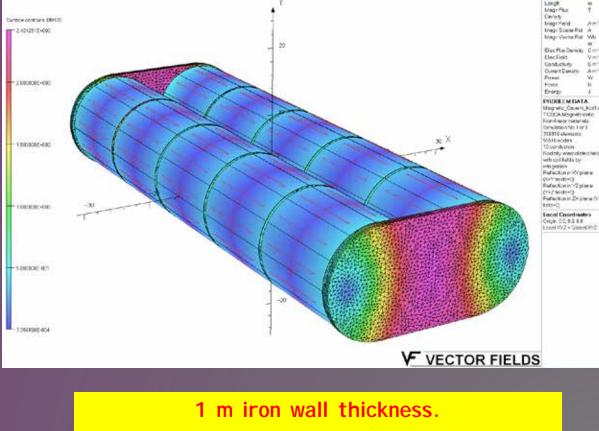
Fine-Resolution Totally Active Segmented Detector (IDS-NF)

Simulation of a Totally Active Scintillating Detector (TASD) using Nona and Minerna concepts with Geant4

- 3333 Modules (X and Y plane)
- Each plane contains 1000 slab
- Total: 6.7M channels


B = 0.5T

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm


14/Nov(200616:38:27

- VLHC SC Transmission Line
 - Technically proven Ø
 - Affordable Ø

vSTORM

R&D to support concept Has not been funded

~2.4 T peak field in the iron. Good field uniformity

🛟 Fermilab

Alan Bross

June 21, 2012 Fermilab Physics Advisory Committee

UNITS Longt Mag: Plux Detely:

Magn Field

Magn Scaler Pol.

Magn Vector Pot

Elec Ray David Beclinit

Currant Density Power

Non-Energy meterials Extra Jacob No. 1 or 1 110318 cluments

50516 modes

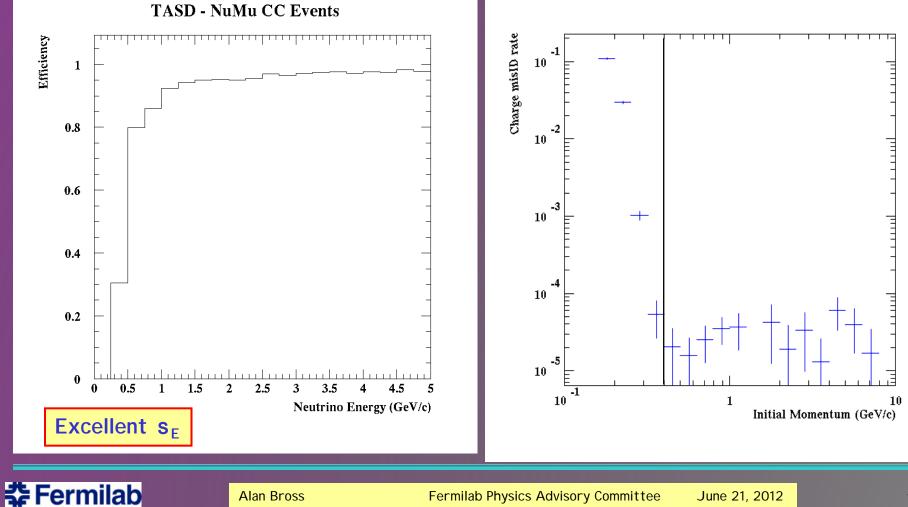
10 conductors Nodolly inecolities texts with cold fields by: His president

DOVY terds-CB Refection in 12 place

100-0 Local Coordinates Cripin 00,8388 Ennellofy2 = Unnellogra

Conducture

Ford Erergy VA.


Yest

TASD Performance

n Event Reconstruction e

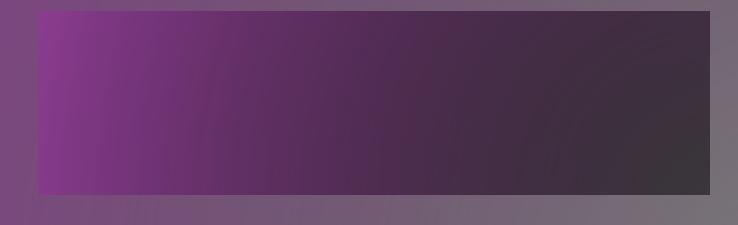
vSTORM

Muon charge mis-ID rate

Detector Options

Technology check List

	Fid Volume	В	Recon	Costing Model
SuperBIND				
Mag-TASD				
Mag-LAr				


Yes - OK
Maybe
Not Yet

Alan Bross

Costing Details

Beamline & Target Station

Based on MiniBooNE \$6.0M ø Horn & PS, misc electrical equipment Instrumentation .5 Ø Civil (~ 2XMiniBooNE) 6.3 Ø Beam line 1.5 Ø ø Total \$14.3 Second time factors ø 1.5 – to include fully loaded SWF 1.35 - in 2012 \$ Ø

Ø Total: \$30M

Decay Ring

Magnets (Used Strauss & Green Costing Model) – V. Kashikhin

nuStorr											
				Quantit		o		-			
		Pole field	Length	Aperture y		Gradient	Magnet Cost*	l otal cost	3.142	Cryo	
Name	Туре	Вр, Т	Lm, m	Da, m	Qty	G, T/m	C, M\$	Total C, M\$			Cr,M\$
D1	Dipole	3.9	0.85	0.3	24	0	0.4787	11.488			1.56
Q1	Quadrupole	3.8	0.5	0.3	30	6.33	0.2070	6.210			1.95
Q2	Quadrupole	1.6	0.6	0.3	33	2.67	0.1295	4.273			2.145
Q3	Quadrupole	0.4	0.6	0.3	63	0.67	0.0526	3.313			4.095
					150			25.3	M\$		9.8
 magnet cost calculated using the magnetic field energy volume where Lm is the magnet length 											

Decay Ring – Estimate II

From Alex Bogacz (ring designer)

19 June 2012 - KBB												
May 15 13:20 Ring_new.opt												
qty		name			-	Bkgcm[i]		• • •		storedenergy[MJ]		cost/type
	24	dAin	85				15	5 15		0.1184		\$739,303
	4	qD1	50						15			
	4	qD2	50						15			\$1,054,374
	4	qD3	50						15			\$950,571
	2	qD4	50						15			
	12	qDD	60	30	0	-0.108			30	0.0035	\$9,003	\$108,041
	2	qDDa	30	30	0	-0.108			30	0.0018	\$4,502	
	28	qDS	60		0	-1.086			15		\$56,898	\$1,593,151
	4	qF1	50	15	0	2.38574			15	0.0900	\$228,825	\$915,302
	4	qF2	50	15	0	2.48112			15	0.0974	\$247,488	\$989,951
	4	qF3	50	15	0	2.57227			15	0.1047	\$266,006	\$1,064,023
	4	qF4	50	15	0	2.53313			15	0.1015	\$257,972	\$1,031,889
	12	qFD	60	30	0	0.108			30	0.0035	\$9,003	\$108,041
	36	qFS	60	15	0	1.086			15	0.0224	\$56,898	\$2,048,337
	2	qFSa	30	15	0	1.086			15	0.0112	\$28,449	\$56,898
	2	qMD1	50	15	0	-0.804088			15	0.0102	\$25,994	\$51,987
	2	qMD2	50	15	0	1.10154			15	0.0192	\$48,782	\$97,564
	2	qMD3	50	15	0	-0.76149			15	0.0092	\$23,312	\$46,625
	2	qMD4	50	15	0	0.354415			15	0.0020	\$5,050	\$10,100
	2	qMS1	50	15	0	-2.05816			15	0.0670	\$170,301	\$340,601
	2	qMS2	50	15	0	1.87905			15	0.0559	\$141,950	\$283,900
	2	qMS3	50	15	0	-1.61757			15	0.0414	\$105,192	\$210,385
	2	qMS4	50	15	0	1.41665			15	0.0317	\$80,683	\$161,366
												\$13,517,101.53

Decay Ring

- Used bigger number for magnets
- Ø PS & Instrumentation \$1M
- Ø Vacuum \$2M
- 💋 Civil \$15.7M
 - Based on m2e tunnel costs (&depth) (\$9.5k/foot) times 1.5 to fully load, EDIA...
- Ø Total: 53.8M
- Solution Note: Transport line costed at 17% (by length) of DR \$9M

Detectors

Assumed total of 1.5 kT mass

Ø Option 1

Took MINOS as built and added overhead to SWF (includes all R&D) and escalated to 2012 \$ (1.35) - \$10M/kT and then added \$3M for STL R&D – Total \$18M

Ø Option 2

- Took EuroNu cost model for NF detector magnetized iron neutrino detector (MIND), added OH to SWF - \$8M/kT
 - ø Technology changes from MINOS:
 - SiPMs
 - SASIC electronics
 - STL magnetization

Used Bigger Number

