TMPI and Parallel HDF5

Test with reading few events and writing into HDF5 or ROOT.

- Both Parallel HDF5 and TMPIFile uses MPI for the parallel I/O.
- Test of doing I/O with 4 MPI processes.
- Writing random numbers into a single HDF5/ROOT file.

TMPIFile

- Derived from TMemFile
- Parallel I/O based on MPI
- Process data in parallel and write them into TFile

Comparison with Parallel HDF5

- Test was done interactively in LCRC machine.
- HDF5 (collective I/O): Write 1 Dataset
- ROOT (TMPIFile): Write 1 TBranch
- 4 ranks writing into 1 file
- Same random number generator

IO bottleneck for TMPIFile when sync rate is small.

TMPI (sec)	PHDF5 (sec)	RANKS	EVENTS PER RANK	SYNC RATE
--	24	4	100000	1
--	2	4	100000	10
13	1.07	4	100000	100
4.5	1.17	4	100000	200
1.88	1.67	4	100000	500
1.29	2.72	4	100000	1000
*1.06	4.86	4	100000	2000

Sync rate is how often the events are written.
From 2000 sync rate, in the case of TMPI, the collector node dominates
the total run time significantly.

TMPI and PHDF5 Comparison

TMPI (sec)	PHDF5 (sec)	RANKS	EVENTS PER RANK	SYNC RATE
--	24	4	100000	1
--	2	4	100000	10
13	1.07	4	100000	100
4.5	1.17	4	100000	200
1.88	1.67	4	100000	500
1.29	2.72	4	100000	1000
1.06	4.86	4	100000	2000

In the case of TMPIFile, the performance depends upon distribution of Workers per collector and sync rate.

DARSHAN Logs

TMPI

PHDF5

For now Darshan cannot capture MPI related I/O calls in TMPI.

2D array for the GPUs

0										
1										
2										
3										
4										
4										

2D matrix.
Can be used both for Matrix like calculation and also 2D arrays like structure. Based on link

2 D Arrays for GPU

0											
1											5
2										7	
3										4	
4											

Basically a Matrix with some maximum number of columns (size of arrays)
Number of rows (number of 1 D arrays)
An additional array to store the number of elements in each row.
Can be used both for Matrix like calculation and also 2D arrays like structure. Based on link

