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Lossy compression of scientific data
• Consist in reducing scientific data volume by leveraging correlations and reducing 

precision (lossless compression does not reduce scientific data enough)

• Compression ratios (with current compressors) vary depending on use-cases, typically:
• CR=5 for hard to compress dataset and demanding data/analysis quality preservation
• CR=10-100 for scientific data presenting high correlation and medium data/analysis quality 

preservation
• CR=x100 for visualization (low data/analysis quality preservation)

• Goal: keep the same science (satisfy user’s quality requirements WRT QoIs – features)
• WARNING: You will see images because this is the easiest way to show distortion 

but compression of scientific data is NOT only for images 

• Getting significant traction in the scientific community (climate, cosmology, seismic, 
etc.), IoT community as well (sensors, EKG)



Huge Progress in performance in the past 5-6 years
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Visualization of Miranda - density data for SZ’s different versions (EB: VRAE 1E-2), Performance on single core CPU (Intel Broadwell)

Evolution of SZ compression quality and performance using a large-eddy simulation of multicomponent flows 

with turbulent mixing: Miranda - density field.

SZx compresses at 300GB/s on NVIDIA A100 → Bottleneck is not compression but PCIe

75MB/s 80MB/s 95MB/s

140MB/s 200MB/s 200MB/s 110MB/s 100MB/s



Many Applications Domains
• Climate

• Combustion

• Cosmology

• Deep Learning
• Activation data

• Model coefficients

• Training data

• Extreme Weather

• Fusion Energy

• Hydrodynamics

• IoT

• Light Sources (LCLS, APS, etc.)

• Materials Science

• Molecular Dynamics

• Quantum Chemistry

• Quantum Circuit Simulation

• Seismic Imaging
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Many Use-Cases

We are seeing an increasing diversity/number of use-cases

“Classic” use-cases:

1) Visualization

2) Reducing storage footprint (offline compression)

3) Reducing I/O, communication time (on-line, in-situ compression)

Recently identified use-cases:

4) Reducing streaming intensity (recent for generic floating-point compressors)

5) Lossy checkpoint/restart from lossy state 

• reduce checkpoints footprint on storage – adjoint, accelerate checkpointing

6) Re-computation Avoiding by reducing the memory footprint → GAMESS

7) Running larger simulations by reducing the memory footprint

8) Accelerating CPU/GPU – memory transfer

9) Reduce DNN model size

10) Accelerate training (I/O read time) of DNNs
Cappello, F., Di, S., Li, S., Liang, X., Gok, A. M., Tao, et Al., Use cases 

of lossy compression for floating-point data in scientific data sets. The 

International Journal of High Performance Computing 

Applications, 33(6), 1201–1220, 2019

SZ has been evaluated 
for all these use-cases



General Principle of Error Bounded Lossy 
Compression

Decorrelation CodingApproximation

Input OutputLossless Lossy Lossless or lossy

E (error)

Most of the researches in
the past 5 years

(Transforms, Predictors, 
SVD, etc.)

Very well known
70 years of 

Shannon Theory
(still some research 

on high 
performance 

codding)

Typical design of a lossy compressor for scientific data

This is where compression 
error is controled:

• Point wise error bounds
• Statistical metrics
• Feature preservation

QoIs: Quantities of interest



SZ as a Software (Responds to ECP users)
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• Compress/decompress by blocks for nearly random-access decompression 

• Can compress 1D, 2D, 3D datasets. and unstructured datasets as 1D

• Multiple // implementations: CPU Core (Vector Instructions), Multi-core (OpenMP), GPU 
(Cuda, Kokkos, HIP*, DPC++*), FPGA (proto)

• Integration in HDF5, ADIOS and PnetCDF

• Production quality. test infrastructure, scripts for regression testing

https://szcompressor.org



Examples of Predictors

d1’ d2’

d3’
d
4

…...

…...

…...

…... …... …...

scan data one by one

d4 = d2’ + d3’ - d1’

the constructed hyperplane must be based on 
“decompressed” coefficients

Lorenzo Linear-regression

And many others: Multi-level interpolation, pattern based, DNN, Wavelet, etc.
For 1D, 2D, 3D and 4D (3D + time) datasets. 



Predictor based on multilevel, multidimensional 
tri-cubic spline interpolation

CR:~315

SZinterp. SZregres.

ZFP MGARD

Original

1D case (linear spline):

At level 0, 0 to predict 𝑑1, → Store quantized error (e0)

At level 1, 𝑑1+e0 to predict 𝑑9, → Store quantized error (e9)

At level 2, 𝑑1+e0 and 𝑑9+e9 to predict 𝑑5, → Store error (e5)

…

Example: SZ Interpolation based Predictor

SZ interp



Generic with App Specific Performance: Customization 

Fully Generic
Few parameters:

Error bound
-Bit grooming

-Digit Shuffling

Fully 
Specific

Parametrizable
(1 algorithm)

ZFP

Multi-algorithms
(per block automatic

selection of predictors) 

SZ 2.0

Meta-Compressor 
(per block automatic

selection) 
SZ-ZFP Hybrid

Hybrid/Autotuning 
(per block automatic

selection of decorrelation) 

Preconditioners
(Add specific stages to 

separate data, 
improve/complement 
generic compressors) 

Customizable
(composition of 

compression pipeline)

SZ 3.0

Higher performance 
(ratio, speed, accuracy)

Too specific:
Expensive to
Develop, 
Maintain,
Update

Goal: reach performance (ratio, speed, accuracy) as close as 
possible to application specific data reduction without 
requiring expensive development/maintenance/update costs.



Feature detection 
Wavelet Transform

Resolution coarsening
Linear regression predictor

Lorenzo Predictor
Spline interpolation predictor

Pattern based predictor
Auto-encoder predictor

Linear quantization
Log transform

Huffman coding
Arithmetic coding
Leading bit coding

Truncation 
Zstd
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Data Analysis

User requirements

SZx

SZ-Interp

SZ 2.1 (default)

SZ-Pattern

Lossy compressor
composition

Lossy compressor
parameters

SZ-separatorSZ 3 (C++) library of algorithms 

for lossy compression and examples 

of SZ compressors built from the 

library of algorithms. 

To compose and tune a compression 

pipeline we analyze the data to 

compress and user requirements in 

compression speed, ratio and 

accuracy.

What makes SZ3 different: a Highly Modular/ 
Customizable Compression Framework

LCLS



Example: Cosmology 1/2 (Storage Footprint Reduction)

Particle dataset: 6 x 1D array (x, y, z, vx, vy ,vz)

Preferred error controls:
• Point wise max error (Relative) bound
• Absolute (position), Relative (Velocity)

HACC: N-body problem with domain decomposition, medium/long-range 

force solver (particle-mesh method), short-range force solver (particle-particle/

particle-mesh algorithm). SZ 2.0: CR ~5 (~6bits/value) at 
10-3 error bound

Figures from Cbench (ECP EXASKY)

ANL: Cosmological Simulations for Large-Scale Sky Surveys



Example: Cosmology 2/2
HACC

S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, Optimizing Lossy Compression with Adjacent Snapshots for N-body Simulation Data, IEEE BigData 2018 

Results validation

3kpc absolute error bound
(particle position)

3kpc absolute error bound
(particle position)

Results validation

Friends of Friends halo mass distribution Power Spectrum

SZ (e=10-3):
Original:

e=10-3

e=10-2

e=10-3

This graph combines 2 separate graphs to 
show impact of different error bounds on PS

SZ (e=10-2):



Context: LCLS II. Goal: Definition of reduction method

Detector produces:

• 2D images @ 250GB/s

• 4M pixel/event unsigned integers, in binary XTC2 format

Compression objectives: CR of 10 or more with error bound @ 500 MB/s/core

→ RoiBinSZ algorithm (regions of interest extraction + background 

binning + SZ background compression)

Example: Crystallography (Streaming intensity)
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Data from detector

Peak finder

Mask regions of interest

Extract background

Low pass filter (binning e.g. 2x2)

Rebuild image

Compress background (SZ 2.1) 

Indexing

Merge

Phase

Refine

Image

Chuck Yoon: (Stanford, LCLS)

1: X-ray Beam 2: Diffraction 3: Reduction



Roibin SZ on Se-SAD SFX 
Dataset (Selenium)  
selenobiotinyl-streptavidin on a cspad detector

Original Riobin SZ

Total compression ratio 1 70.65

Number of hits 744,150 744,150

Number indexed 255,065 255,918

Rsplit ↓ 7.58% 7.08%

CC1/2 ↑ 0.997 0.997

CCano ↑ 0.087 0.104

Rwork ↓ 0.206 0.199

Rfree ↓ 0.231 0.223

Map-model CC ↑ 0.81 0.8

↑: higher the better          ↓: lower the better

Crystallography: First Level of Analysis 
Distortion: Indexing 

• Number of hits: An image with at least 15 
peaks is considered a hit

• Number indexed: Number of crystals 
extracted from hits

• Rsplit: measure precision of averaged 
intensities/amplitudes

• CCano: The correlation coefficient of the 
Bijvoet differences of acentric reflections

• CC1/2: Pearson correlation coefficient.
• Rwork: measure of the agreement between 

the crystallographic model and the 
experimental X-ray diffraction data

• Rfree: Rwork computed on a small, random 
sample of data

• Map-model CC: cross-correlation between 
electron density map and model.

Chuck Yoon: Stanford



Crystallography: Final Level of Analysis 
Distortion: Protein Reconstruction

Original

Reconstruction of Electron Densities Lysozyme
Very important role in our immune system: breaks up (digests) components of the cell walls of bacteria.

Chuck Yoon: Stanford

Lysozyme on a jungfrau4m detector

The data on the right is 196x smaller (or 631× if also using Non-Hit Rejection)

Compression ratio: 196Original



Example: Ptychography (Storage Footprint Reduction)
Tekin Bicer (DSL and XSD)

RATIO 2 4 8 16 32 64

Spatial 72.9 97.2 117.7 144.7 147.2 181.1

Temporal 90.2 123.2 245.1 307.3 354.4 465.1

PSNR 2 4 8 16 32 64

Spatial 200.1 196.7 192.7 188.5 180.5 175.7

Temporal 194.2 187.9 185.0 181.9 167.9 165.6

Timing (secs,

comp/decomp)

2 4 8 16 32 64

Spatial 18.6/

8.3

18.5/

7.6

18.6/

7.4

18.8/

7.1

18.5/

7.4

17.5/

7.6

Temporal 28.1/

16

29.4/

15.6

27.8/

15

27.7/

14.9

27.6/

14.9

29/

14.7

Original dataset: Catalyst Particle
Compressed with SZ2.1 (not Riobin SZ)
Single scan (diffraction patterns): 1856x1030x514
Compressed 1856 images of 514x1030 pixels.

For the spatial compression, the dataset is treated as 
a 3D dataset, so the predictor adopts a 3D Lorenzo + 
3D Linear regression;

For the temporal compression, the compressor 
predicts each data point only based on its temporal 
dimension

Beamline Scientists: Junjing Deng, Jeff Klug and others
Compression and reconstructions: Sheng Di, Tekin Bicer

Tested absolute error bound from 2 to 64. 
Absolute error bound of 2 translates to (+/-) 2 
photon count error on the detector.

Absolute error bounds 

PSNR computed from the diffraction patterns 
(not reconstruction result)

Timing: Bebop cluster, Intel Xeon E5-2695v4 (1 core).

GB/s (comp) 2 4 8 16 32 64

Spatial 201.5 202.6 201.5 199.3 202.6 214.1

Temporal 133.3 127.4 134.8 135.3 135.8 129.2
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Ptychography: Reconstruction from Diffraction Pattern
Tekin Bicer (DSL and XSD)

Spatial error bound: 4 
Compression ratio: 97
SSIM: >0.96

Temporal error bound: 8
Compression ratio: 245
SSIM: >0.94

Original
No (de)compression

Beamline Scientists: Junjing Deng, Jeff Klug and others
Compression and reconstructions: Sheng Di, Tekin Bicer

Ptycho. 
recon.

(de)compressed 
diff. patterns

Ptychographic experiment: reconstruction on (sz) decompressed diffraction patterns.

Reconstruction parameters: Iter=300; Alg.:Conjugate Gradient (Tike)



Conclusion

Lossy Compression for scientific data:
• Very popular topic among application teams
• SZ is the only customizable compressor
• … designed to enable science preservation
• Can tune compression ratio, speed and 

accuracy according to specific constraints
• Tested on many different applications and 

experiments
• Generic SZ good enough for Ptychography
• Specific RiobinSZ needed for Crystalography
• Open-source, production quality, integrated 

in HDF5 and other I/O libs (Adios, NetCDF)
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SZp: Design Principle

⚫ Pre-quantization: raw data → integers 
(based on error bound)

⚫ 1D 3-layer Lorenzo: Data prediction 
based on only three previous values

⚫ Compute difference between predicted 
value and raw data value

⚫ Search 0-pattern blocks: search all-0 
blocks (block size = 16)

⚫ Encode quantization bins: simplified 
bit-shuffle-similar encoding



SZp: High Speed Compression

⚫ We have implemented the CPU version to verify SZp’s compression ratio and GPU version for speed.

⚫ Compression quality: SZp has much higher quality than SZx on seismic pressure datasets. SZx may 
have obvious artifacts at high-compression cases (i.e., error bound is relatively high), while SZp has no 
such issue.

⚫ Compression speed: cuSZp significantly outperforms the BitComp on CUDA A100 when including 
kernel launch cost: 400GB/s vs. 200GB/s.

CR 1E-2 1E-3 1E-4 1E-5

SZx 6.1 5.07 4.1 3.5

SZp 19.4 12.3 8.5 6.3

REL=1E-2, 

CR=5



More Lossy Compressors

ZFP (LLNL): Transform (DCT)
ECP ZFP
Overpreserves data, lower
Compression ratio compared
to SZ, Better speed.

SPERR (NCAR): Wavelet
Works well on wave 
propagation problem 
(Climate, Seismic)

MGARD (ORNL)
ECP CODAR
Multigrid adaptive 
reduction
MGARD controls the 
compression errors in 
quantities of interest (𝒬):
Linear expression of the error

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that 

Satisfies Each Pinard et al (2020) Requirements



More Lossy Compressors

Autoencoders

12 residual blocks

for feature extraction

+ 3 compression layers

Significant
Smoothing

Overall architecture of 

convolutional autoencoder 
(A. Glaws, R. King, and M. 
Sprague, “Deep learning for 
in situ data compression of 
large turbulent flow 
simulations,” Physical Review 
Fluids, vol. 5, no. 11, p. 
114602, 2020.)

TTRESH (LLNL):

HoSVD (Tucker Decomposition)
Quantize the Core tensor
Very high compression ratio
Tendency to blur the overall data
(loose details)
1 or 2 orders of magnitude slower
than SZ or ZFP

Compressor Pearson R^2 Spatial Error KS-test

SZ_Interp 93 93 21

SZ (regression) 14.34 14.34 14.34

ZFP 5.45 5.45 2.36

MGARD 27.1 4.69 X

MGARDx 14.7 6.49 X

TThresh 16.1 16.1 2.98

BitGrooming 1.51 1.51 1.51

Digit Rounding 1.86 1.86 1.86

FPZip 1.95 1.95 1.95

NDZip 1.64 1.64 1.64

Zstd 1.35 1.35 1.35

Largest Compression Ratio For Each Compressor that 

Satisfies Each Pinard et al (2020) Requirements



Methodologies

https://sdrbench.github.io/ https://github.com/robertu94/libpressio

https://github.com/CODARcode/Z-checker

https://sdrbench.github.io/
https://github.com/robertu94/libpressio
https://github.com/CODARcode/Z-checker


VSZ
Features to preserve are mathematically formalized 
and integrated into compressor error controls 

• VSZ (SZ-Critical points): Preserves Critical points in 2D, 3D 
piecewise linear vector fields (Important in flow visualization, 
keep each critical point in its original cell, retain each critical point 
type). 
Compute error bound on each data point.

Provides excellent compression performance and feature preservation.

Limitations:
• Expressing feature mathematically could be too complex. 
• Requires specific compression algorithm designs for each feature to preserve. 
• Preservation of combination of features has not been addressed.

Original FPZIP

SZ VSZ

X. Liang et al., Toward Feature-Preserving 2D and 3D Vector Field 
Compression, IEEE Pacific Visualization Symposium (PacificVis), 2020


