Charge and light studies in the FD-HD

M.Torti, G.Brunetti

Università di Milano Bicocca and INFN Milano Bicocca

FD Sim/Reco meeting 21st November 2022

Our simulation

- Far detector Horizontal Drift with refactored geometry, LarG4 algo: IonAndScint Correlated, reconstruction: pandora
- Event samples:

 \searrow Q+L energy reconstruction \rightarrow resolution wrt deposited and true energy

monoenergetic single muons

500 beam ν_{e}

300 beam v

Vertex: x = [-330, 330], y = [-570, 570], z = 30; Angle: $\theta_{xz} = [-30, +30]$, $\theta_{yz} = [-30, +30]$ E = 350 MeV, 500 MeV, 750 MeV, 1 GeV, 1.5 GeV, 2.0 GeV \Rightarrow 300 events for each energy

monoenergetic single electrons

E = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 GeV → 500 events for each energy

- Check Charge-Light anticorrelation \rightarrow this presentation
- Resolution VS energy \rightarrow in progress
- Analysis using: all collection plane charge hits of the event all PE reco of the events
- To compare reconstructed energy to the true energy \rightarrow Containment cut: pandora spacepoints of the event in fiducial volume: |x| < 310, |y| < 550, 50 < z < 1250 cm

Energy estimation with Charge and Light (Recap)

The energy deposited in the detector goes into 2 observables, **Charge and Light**

Charge: $\mathbf{Q} = \mathbf{N}_{e} = N_{i} R$ Light: $\mathbf{L} = \mathbf{N}_{y} = N_{ex} + N_{i} (1-R)$ R = Recomb. factor

 $\mathbf{Q}+\mathbf{L}=\mathbf{N}_{i}+\mathbf{N}_{ex}=\mathbf{\Delta E} / \mathbf{W}_{ph}$

 W_{ph} = 19.5 eV = average amount of energy deposited by a charged particle to produce an ion or exciton

→ Charge and Light Sum is directly proportional to the energy deposited → one can perform a calorimetric measurement by-passing the correction for recombination that is no longer necessary $EQL = W_{ph} * (Q+L)$ $Energy from Charge: EQ = Q*R/W_{ion}$

So we need:

 $\mathbf{Q} = N_e$ = Calculated number of ioniz. Electrons from reconstructed charge

 $\mathbf{L} = N_{y} = Calculated$ number of scintillation gammas from reconstructed OpDet PE

Charge and Light

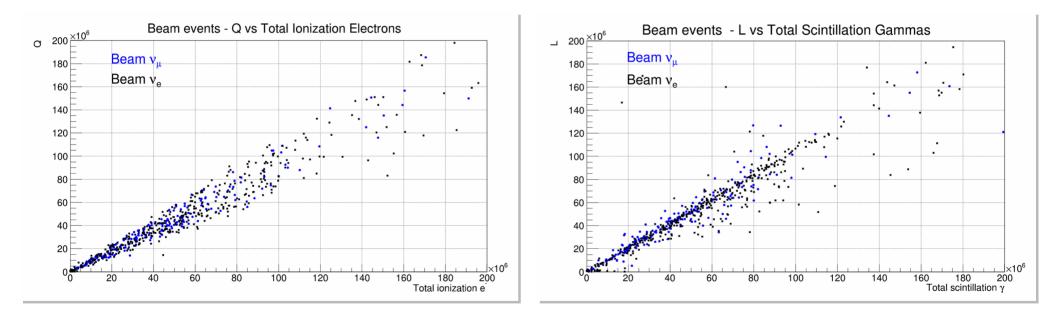
- $\mathbf{Q} \leftrightarrow \mathbf{Ioniz.} \ \mathbf{Electrons} \qquad \mathbf{Q} = \mathbf{C}_{cal}^{e} \Sigma_{i} (\mathbf{q}_{i} e^{(ti/\tau)})$
 - $\mathbf{q}_{i} \mathbf{e}^{(ti/\tau)}$ = Charge corrected by electron lifetime
 - = Sum of all collection plane hits corrected by electron lifetime
 - C^{e}_{cal} = ADC to electron calib. const \rightarrow In the fcl files we found:

ElectronsToADC: $6.8906513e^{-3} \rightarrow 1/6.89e^{-3}$

• $L \leftrightarrow Scint. Gammas$ $L = Total PE / (0.03*F_{vis})$

3% Quantum Eff $\mathbf{F}_{vis} = (\sum_{vis} (\mathbf{p}_i) \mathbf{q}_i) / \sum \mathbf{q}_i = \text{Charge weighed visibility function of the event}$ \downarrow light map value in $\mathbf{p}_i = x_i, y_i, z_i = \text{Pandora SPACEPOINT}$

• If calculation is done correctly:

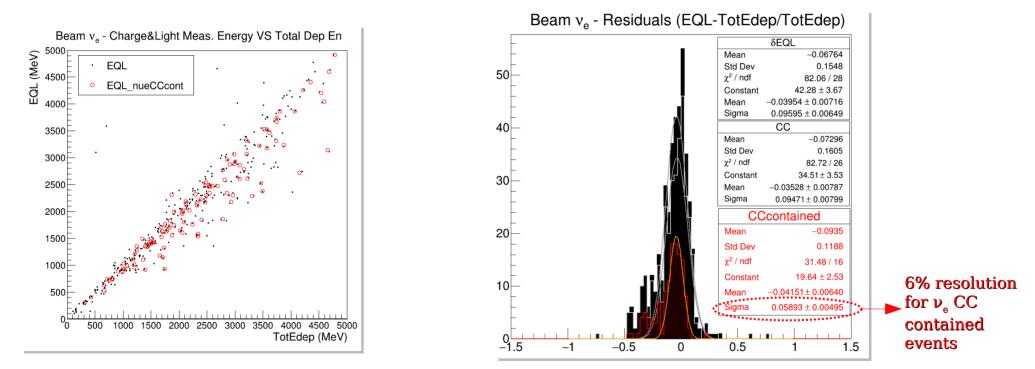

Q should correspond to the number of ioniz. electrons and

L to the number of scint. gammas produced by Ion&Scint

 $More \ details \ in \ https://indico.fnal.gov/event/56743/contributions/252933/attachments/160820/212011/brunetti_charge_light_fd.pdf$

Beam $\nu_{\mu} \text{ and } \nu_{e} \text{ events - } Q \text{ and } L$

- If calculation is done correctly, Q should correspond to the number of ioniz. electrons and L to the number of scint. gammas produced by Ion&Scint
- \rightarrow Check Q vs Ioniz. Electrons and L vs Scint. Gammas from Ion&Scint

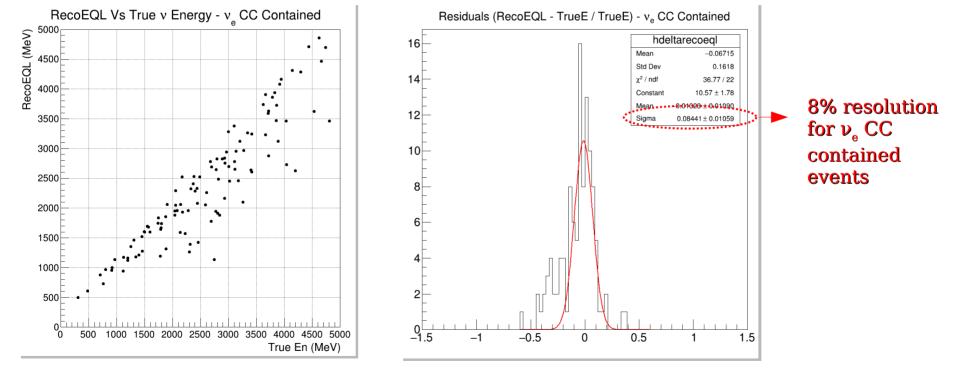


Beam ν_e events - EQL vs Deposited Energy

EQL = $W_{ph} * (Q+L) \rightarrow$

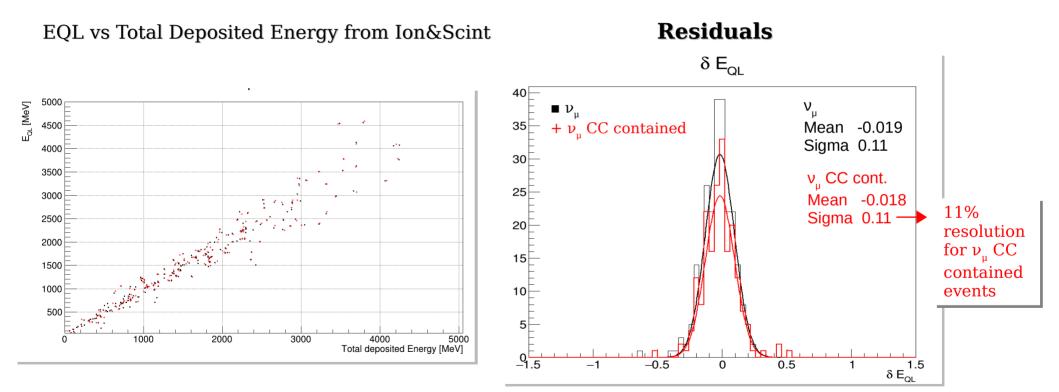
EQL vs Total Deposited Energy from Ion&Scint

Residuals

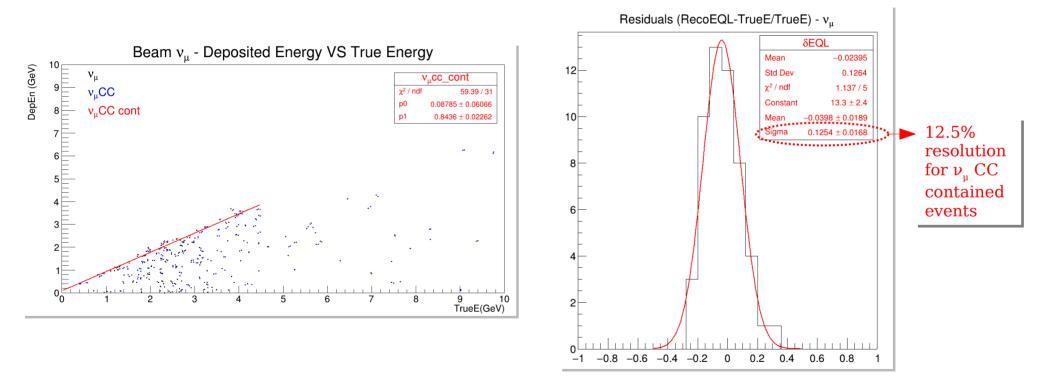


Details at: https://indico.fnal.gov/event/56743/contributions/252933/attachments/160820/212011/brunetti_charge_light_fd.pdf

Beam ν_e events - RecoEQL vs True Energy

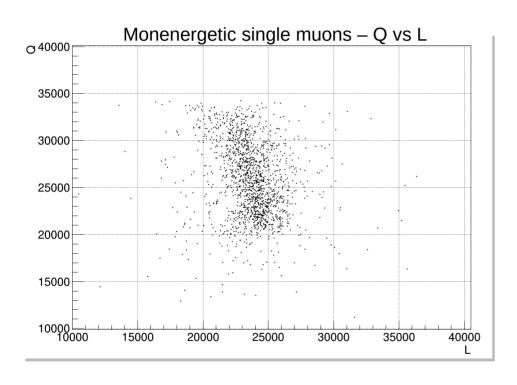

Fit Deposited energy vs True Neutrino Energy → apply correction with fit params
 (see: https://indico.fnal.gov/event/56743/contributions/252933/attachments/160820/212011/brunetti_charge_light_fd.pdf)

2) Apply containment cut

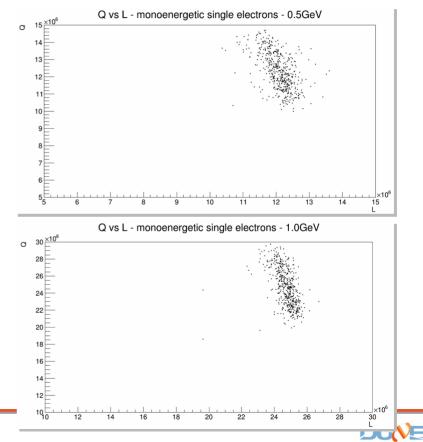

Beam ν_{μ} events - EQL vs Deposited Energy

EQL = $W_{ph} * (Q+L) \rightarrow$

Beam ν_{μ} events - RecoEQL vs True Energy


1) Fit Deposited energy vs True Neutrino Energy → apply correction with fit params
2) Apply containment cut

Single muons & single electrons - Charge and Light anticorrelation


Single Muons:

 All energy samples: Q & L normalised for deposited energy

Single Electrons:

• Q & L anticorrelation for 0.5 & 1.0 GeV samples (other samples on the way)

Conclusions & Next Steps

- First energy estimation for beam events in the HD-FD combining Charge+Light
- For ν_{e} CC contained events $\sigma(EQL)=6\%$ residuals wrt deposited en. • For ν_{μ} CC contained events $\sigma(EQL)=8.4\%$ residuals wrt true en. • For ν_{μ} CC contained events $\sigma(EQL)=11\%$ residuals wrt deposited en. $\sigma(EQL)=13\%$ residuals wrt true en.

Neutrino energy resolution estimated using only charge information: 15%-20% for 0.5 - 4 GeV neutrino energies

(Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment, Phys. Rev. D 105, 072006 (2022))

- We are able to see the **anticorrelation between charge and light** using monoenergetic single particle samples of muons and electrons
- Next: Check Resolution vs Energy using single muons & single electrons

Stay tuned!