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Charge: We ask the PAC to review the status of the AI/ML program at the laboratory and to assess whether the 
laboratory is in position to make a compelling case to become an AI/ML center



Vision

• Develop AI capabilities to accelerate HEP science and contribute 
greater science/industry AI ecosystem 

• Build diverse, inclusive community; assemble multi-disciplinary 
collaborations around cross-cutting HEP AI challenges
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AI for physics, physics for AI

ai.fnal.gov 
Snowmass Talk on Cross-boundary AI

http://ai.fnal.gov
http://ai.fnal.gov
https://indico.fnal.gov/event/22303/contributions/245345/


Motivation
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DOE HEP builds and operates among the most difficult and biggest projects with the most 
complex devices in science -- accelerators and detectors.  Our priority is using AI for real-
time controls, operations, and data processing to accelerate HEP science.  

Computing hardware  
and infrastructure

Real-time AI  
systems at edge

Algorithms for HEP science 
Physics-inspired data & models;  Robust & 

generalizable learning; Fast and efficient algorithms

Operations and  
control systems

Pillars for AI-accelerated discovery



AI for HEP

5

• Deeper insights & better performance  
Maximize science by getting the most out 
of machines and experiments; reduce 
systematics and understand anomalies


• Accelerate time-to-physics 
Enable powerful/robust ML at each stage of 
data processing; mitigate computing and 
data analysis challenges; automate 
scientific method and discovery


• Improve operational efficiency 
Optimize experimental “control” via 
triggers, data monitoring; recover lost data 
and physics

Drivers to accelerate discovery
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• Physics-inspired data & models 
Models tailored to physics and 
machine data representations that 
integrate our physics knowledge


• Robust & generalizable learning 
Build robust models to adapt/
extrapolate; quantify uncertainties and 
understand anomalies; towards 
explainable algorithms  


• “Fast” & efficient algorithms 
ML in hardware-constrained 
environments for real-time operations 
and decision-making

Algorithms for  
HEP science



Executive summary
• Fermilab AI/ML program focused on accelerating science 

• Program pillars connect algorithm advancements with sensing, computing, and 
operations to solve HEP challenges


• Identified areas where Fermilab contributes to the greater DOE AI needs 

• AI Project Office coordinating overall strategy and building community 

• Portfolio of research strong case for AI center involvement


• Center lead would focus on real-time AI and edge sensing 

• Additional focus areas could complement other centers (digital twins, automated 

discovery and design) 

• Modest funds needed to seed efforts during upcoming critical 1 year period

• Opportunities to develop collaborations & projects focused on core AI research, 

strategic HEP applications, and industry/academic partnerships

6



Outline
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AI Project Office 
(Nhan Tran), head, CSAID 

(Burt Holzman), deputy head, CSAID 
(Farah Fahim), ETD 

(Tia Miceli), AD 
(Brian Nord), CSAID 

(Gabriel Purdue), ETD 
(Tingjun Yang), PPD
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AI Project Office 

Primary for strategy and day-
to-day operations

Cosmic

Intensity/ν

Collider

CS/AI & infra

QuantumAPS-TD

Accelerator

FESS

IARC

Users

Detectors

Theory

Comms

Liaisons: link across the laboratory 
communicate interests and needs of focus area to AI project and focus area participants 


providing input to overall AI project strategy 
organize materials, inputs for AI-related funding calls and communications.  

AI Program and Liaisons



Mission

• Developing strategic capabilities within the (inter)national AI ecosystem 
– AI to advance lab scientific mission, and where Fermilab can advance AI research 

• Building community around cross-cutting problems, tools, and educational 
opportunities 
– Connecting teams across the lab and keeping a big-picture view of what is going on 
– Develop infrastructure for AI research — both people (e.g. AI associate program) and 

hardware (e.g. GPU access) 
• Establish a strategy to support a strong funding profile through network of 

stakeholders and partners 
• Sharing Fermilab and HEP’s AI work with the world
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Workforce development

• New job type developed for AI research: AI associate program

• New job family for advancement at Fermilab


• Modeled after industry 1-year internships

• Provides scientific AI research opportunities 


• Primarily Bachelors/MS with background in computer science & AI

• Concept emulated in other areas - e.g. engineering, quantum
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Program context
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Operations and  
control systems



AI program in ~15 minutes
• Algorithms for HEP science 

• Physics-inspired models and data 
• Graph learning

• Generative models

• SBI/likelihood-free inference

• Accelerating theory


• Robust and generalizable learning  
• Domain adaptation

• Anomaly detection

• Semi-/self-supervision


• Fast and efficient algorithms 
• Multi-objective optimization

• Quantization/sparsity

• Knowledge distillation
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• Operations and controls 
• Real-time accelerator controls

• Telescope design and operations 

• Quantum machine learning


• Computing hardware and infrastructure 
• Resources for AI practitioners

• Efficient AI-in-production


• Real-time systems at the edge 
• Hardware-algorithm codesign for HEP 

and beyond

• Near-detector, low latency AI

• On-sensor/detector AI



Program context
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Reconstruction and pattern recognition
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Convolutional NNs to provide crucial information in neutrino 
interactions

• Waveform ROI identification 
• 1D CNN to identify signals in the raw waveforms. 
• Works for both TPC and photon detector waveforms. 

• Hit tagging 
• 2D CNN to flag each hit as track, shower or Michel activity. 
• Validated using ProtoDUNE data. 

• Neutrino ID 
• 2D CNN to flag each neutrino interaction as numu, nue or NC interaction. 
• Developed for DUNE and validated using ArgoNeuT data. 

• MicroBooNE open data! 
• A tool for collaborative AI developments 
• https://microboone.fnal.gov/documents-publications/public-datasets/

Uboldi et al, Nucl. Instrum. Meth. A 1028 (2022) 166371
ArgoNeuT JINST 17 (2022) P01018

DUNE Eur.Phys.J.C 82 (2022) 10, 903
  

ArgoNeuT Preliminary

ProtoDUNE track/shower tagging

https://www.sciencedirect.com/science/article/pii/S016890022200047X?via%3Dihub
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01018
https://link.springer.com/article/10.1140/epjc/s10052-022-10791-2


Reconstruction and pattern recognition

• Broad applications across HEP 
• LHC Jet tagging natural application for Graph NNs 

• Boosted Higgs (→ bb) gives 2x more signal efficiency

• Enables new analyses → ggHcc!


• Graphs for clustering & tracking 
• CMS HGCal (High Granularity Calorimeter) clustering - leading 

performance for multi-particle reconstruction

• ECal clustering application for Run 2/3 targeting - improves γγ 

significance by ~7%

• Other applications include MET, pileup mitigation, etc 

• Exploration for LArTPC reconstruction for tracking + clustering
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CMS-DP-2018-046 

Gray, Kljinsma, et al., arXiv:2003.08013


Cerati, Kowalkowski, Gray, Klijnsma, et al., 

https://arxiv.org/abs/2103.06233Including Graph Neural Networks to extract optimal performance 

from complex, high-dimensional, sparse data

https://arxiv.org/abs/2003.08013
https://arxiv.org/abs/2103.06233


Simulation-based Inference (SBI) for Cosmic Analysis
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MCMC

SBI

Nord ECA 
Galaxy Spectra 

Khullar, Nord, Ciprijanovic, Poh, Xu 2022 (MLST & Neurips) 
Strong Lenses 

Poh et a.l, 2022 in Neurips Workshop

SBI shows correct 
level of confidence in 

estimates.

Proof-of-concept: 
Simple SBI method (not highly 
tuned) is just as accurate as 
MCMC, but much faster

• Goal: Maximal information extraction from high-
dimensional data to rapidly find/measure objects, 
dark energy, dark matter 
• Traditional methods use explicit analytic functions 

with simplified assumptions; typically slow and 
inaccurate


• Forward modeling and SBI permits flexible 
likelihoods  
• Simulated datasets until matching observation 
• Can be 105 times faster than traditional methods  

• Applications across many surveys (DES, LSST, CMB-S4) 
and objects (Strong Lenses, Spectra, Quasars, Galaxy 
Clusters) 
• Connections across all of HEP



Generative models for simulation
• High fidelity ML-based parameterized simulation to 

mitigate computing bottleneck for DUNE and LHC 
• Find way to fuse GEANT full-sim with ML 

• More naturally run on coprocessors


• GENN for photon transport simulation

• Stable diffusion (CaloDiffusion) for LHC calorimeter
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Pedro et al., arXiv:2202.05320, ACAT2021

Pedro et al., arXiv:2203.08806


Mu, Himmel, Ramson, Mach. Learn. Sci. Tech. 3 (2022) 1, 015033

20-50 times 
faster than 
Geant4 
simulation

Diffusion model: avoids 
pitfalls of GANs, high 

quality output


Competitive results on 
the CaloChallenge 

dataset 

https://arxiv.org/abs/2202.05320
https://arxiv.org/abs/2203.08806
https://iopscience.iop.org/article/10.1088/2632-2153/ac58e2


Accelerating theory
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Hidden nucleon ansatz (AI)

Perturbatively-corrected theory calculation

16O point nucleon density

Rocco et al., arXiv: 2206.10021

Issacson et al., arXIv:2212.06172


Neural importance sampling 
with normalizing flows: 

Models a complex probability density 
as an invertible transformation of 

simple base density.


Machine-learned 

multi-channel Drell-Yan 

Develop flexible hidden-nucleon, neural network ansatz suitable to 
solve the nuclear many-body Schrodinger equation


Non-exponential scaling with number of nucleons 

Light and medium-mass nuclei's energy and spatial density 
distributions in excellent agreement with theory calculations

https://arxiv.org/pdf/2206.10021.pdf
https://arxiv.org/pdf/2212.06172.pdf


Domain Adaptation for dataset shift
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Deep Universal Domain Adaptation 
Ciprijanovic, Lewis, Pedro, Madireddy, Nord, Perdue, Wild 

(2022 in Neurips Workshop, 2023 in prep for journal) 
CMS, Stealth SUSY search arXiv:2102.06976

Example images of 
simulated galaxy 

morphologies with 
different levels of 
telescope noise.

Confusion matrix for 
classification of galaxy 
types using DUDA

High noise Low noise

• Adapting AI models as data changes — different 
datasets, simulation vs. observation, etc. 
• Mitigate bias from training sample


• Deep Universal Domain Adaptation (DUDA) for 
cosmic analysis 
A. reduces the need hyperparameter tuning and  
B. reduces the requirement for overlap between training and 

observed data 

• Applications across many surveys (DES, LSST, CMB-S4) 
and objects (Strong Lenses, Spectra, Quasars, Galaxy 
Clusters) — connections across all of HEP 

• Unsupervised domain adaptation from gradient reversal is used 
for data-driven in LHC analysis for Stealth SUSY background 
estimation

https://arxiv.org/abs/2102.06976


Robust learning from data

• Anomaly detection 
• At the LHC 

• Studied on dark QCD showers - autoencoder trained only on bag-only 
exceeds performance of BDT trained on a "wrong" signal model  

• In L1 trigger - enable sensitivity to hidden or suppressed new physics 
scenarios (leptoquarks, new scalars, …)  

• For accelerator controls, L-CAPE project using 2022 Linac Data 
• LSTM autoencoder to identify faults — higher operational efficiency 
• Most common Linac faults being identified, and some with actionable 

precursors  
• Semi-supervised models 

• Semi-supervised graph learning for PU mitigation reduces reliance on 
simulation (modeling, truth info) - trains on charged particles in data 

• Improves on expert algo by > 20% for jet mass resolution
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Pedro et al., JHEP 02 (2022) 074


Ngadiuba et al., arXiv: 2107.02157


Ngadiuba et al., Nature Machine Intelligence 4, 154 (2022)

Ngadiuba et al., arXiv: 2110.08508


Feng, Tran et al., submitted to EPJCDeeper insights with less reliance on simulation 

https://link.springer.com/article/10.1007/JHEP02(2022)074
https://arxiv.org/abs/2107.02157
https://www.nature.com/articles/s42256-022-00441-3
https://arxiv.org/abs/2110.08508
https://arxiv.org/abs/2203.15823
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Fast and efficient algorithms

• Real-time and efficient AI: driver 
for scientific sensing/compute


• Core research into quantization and sparsity 
and optimization techniques


• Important for hardware implementation  
(more on this later)

• Developing training frameworks for 

quantization-aware AI and hardware 
translation


• QONNX - build industry standards - 
interchange formats for quantized AI


• Building techniques for broader 
scientific community

• Quantized model distillation for microscopy 

24

Hawks, Tran, Quantization-aware pruning, arXiv:2102.11289 
Mitrevski, Hawks, Muhizi, Tran, QONNX, arXiv:2206.07527 

An end-to-end codesign workflow of Hessian-aware quantized neural networks for FPGAs and ASICs 
Campos, Hawks, MItrevski, Tran 

Quantized Distilled Autoencoder Model for 4D Transmission Edge Microscopy 
Forelli, Muhizi, Tran 

Hessian-aware solver more efficient 
than brute-force design optimization

Collaboration with 
industry/community on 
common standards for 
representing quantized 

neural networks 

https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2206.07527
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Hawks, Tran, Quantization-aware pruning, arXiv:2102.11289 
Mitrevski, Hawks, Muhizi, Tran, QONNX, arXiv:2206.07527 

An end-to-end codesign workflow of Hessian-aware quantized neural networks for FPGAs and ASICs 
Campos, Hawks, MItrevski, Tran 

Quantized Distilled Autoencoder Model for 4D Transmission Edge Microscopy 
Forelli, Muhizi, Tran Where we are

https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2206.07527
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Real-time 
accelerator  
control
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Real-time 
accelerator  
control

Linac RF optimization 
Predict RF parameters to keep beam energy 

constant and minimize emmitance 

Proof-of-concept with single cavity phase 
regulation; multi-cavity promising
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Real-time 
accelerator  
control

3

Reference system:
B coil, transductor, 

dB/dt coil, zero-crossing

GMPS control rack

Programmable 
logic

target 
settings

Power supplies 1-4

measurements 
(& errors)

control signals

series
connect

Accelerator Control Network

sampled 
Imin, Imax

FIG. 1. Overview of the control system.

FIG. 2. PS Output Voltage.

of the magnetic field, which is an important input to the
GMPS regulator. Powered with the other gradient mag-
nets and housed in a low-radiation environment without
charged particle beam passing through it, this reference
magnet provides an accurate representation of the mag-
netic field under control throughout the accelerator.

Timing information related to ~̇B = 0 synchronizes the
GMPS regulator system to the minimum and maximum
values of the magnetic field and provides a TTL-based
15 Hz master clock signal which drives the timing system
for the rest of the accelerator complex. The minimum
and maximum values of the magnetic field are digitized,
fitted, and used as the primary feedback mechanism for
the GMPS regulator system. Reducing the errors of the
regulation system is of primary concern in the operational
performance and e�ciency of the Booster. The details
of the present and proposed regulation systems will be
discussed here.

B. GMPS Regulation

The present GMPS regulation system seeks to mini-
mize the impact of disturbances due to environmental
factors such as ambient temperature; nearby high-power,

FIG. 3. Existing GMPS regulation loop.

pulsed RF systems; and ramping power supplies with in-
ductive loads. Variations in the AC line frequency and
amplitude are also significant sources of error, and are
due in part to other particle accelerators in the complex
changing currents in their own high-current electromag-
nets as part of their normal operations. Minimization of
these GMPS regulation errors is accomplished with a tra-
ditional implementation of a PID control scheme. Each
cycle, the reference system samples readings of the mag-
netic field at high rate around the minimum, returning
the fitted minimum magnetic field value. This measured
minimum reflects the set point, the compensation applied
by the regulator for that cycle, and any new influence of
other nearby electrical loads. It may be as much as a
few percent. Calculated estimates for the the minimum
and maximum values of the changing magnetic field of
the previous 15 Hz cycle are used to adjust the power
supply program and decrease errors of the system. See
Figure 3 for a block diagram of the existing GMPS reg-
ulation loop.
The environmental errors discussed above increase the

distributed long-term steady-state errors of the GMPS
system. A traditional PI regulation loop, given a su�-
cient amount of time will decrease the steady-state error
of a system to zero. In reality, and within the timescale
of the Booster beam cycle, the PI loop will decrease the
steady-state error to �e. E↵orts to decrease the steady-
state error further by adjusting the closed-loop gains will
come at the cost of overall system stability. Therefore,
a balance between the steady-state error and stability of
the system should be determined. A distribution of mea-
sured errors for the minimum value of the magnet current
can be seen in Figure 4.

IV. DATASET

We amassed a dataset for the Fermilab accelerator
complex to provide cycle-by-cycle time series of read-
ings and settings from di↵erent particle accelerator de-
vices within the Booster. This data contains a small
subset of values for the 200,000 entries that populate the
device database of the accelerator control network (AC-
NET) [26]. Data was sampled at 15 Hz for 54 accelerator
devices that pertain to the regulation of the GMPS dur-
ing two separate periods: from June 3, 2019 to July 11,

Booster GMPS 
Real-time reinforcement learning agent in 

FPGA to regulate Gradient Magnet Power 
Supply; replace a traditional PID loop — shows 

improvement in reward (reduced magnet 
current error) 

Development of digital twin for simulation 
framework



30

Real-time 
accelerator  
control

READS 
Real-time edge AI distributed system

Disentangle Main Injector and Recycler 
Ring beam loss with U-Net

Reinforcement learning agent 
to regular Mu2e slow spill and increase 

spill duty factor
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Real-time 
accelerator  
control

NuMI Beam Variable predictions 
Predict the NuMI proton beam position, 

intensity, and horn current 


Goal to reduce neutrino flux systematics




Automation for cosmology experiments
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Self-driving telescopes:  
Adaptive optimization for survey scheduling

• Unsupervised Graph Neural Networks: optimize an 

observation strategy to constrain cosmological parameters 
• Supervised Reinforcement Learning: build a decision-

making algorithm to prepare or adapt observations

Spectroscopic Survey Optimization 
Cranmer, Melchior, Nord, 2021 (Neurips workshop) 

Optical System Design 
Cohen (HS student) and Nord, 2023 (in prep.)

A network of galaxies 
optimally selected for 
cosmic matter estimation

Automated instrument design: replace 
expensive optics simulation 

Use decisions trees + simulation-based inference to 
arrange optics and choose optical element


Schematic example of generating an 
optical system - Green arrows show 

optimized tree traversal

Overview: tree produces optical 
system; posteriors are of 

element shape parameters



Quantum machine learning
Science mission: explore application of “quantum machine learning” to scientific data
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1.1 Background 5

1.1.3 Four Approaches

As mentioned before, there are several definitions of the term quantum machine
learning, and in order to clarify the scope of this book it is useful to locate our
definition in the wider research landscape. For this we use a typology introduced
by Aimeur, Brassard and Gambs [10]. It distinguishes four approaches of how to
combine quantum computing and machine learning, depending on whether one as-
sumes the data to be generated by a quantum (Q) or classical (C) system, and if the
information processing device is quantum (Q) or classical (C) (see Fig. 1.1).

The case CC refers to classical data being processed classically. This is of course
the conventional approach to machine learning, but in this context it relates to ma-
chine learning based on methods borrowed from quantum information research. An
example is the application of tensor networks, which have been developed for quan-
tum many-body-systems, to neural network training [11]. There are also numerous
‘quantum-inspired’ machine learning models, with varying degrees of foundation in
rigorous quantum theory.

The case QC investigates how machine learning can help with quantum comput-
ing. For example, when we want to get a comprehensive description of the internal
state of a quantum computer from as few measurements as possible we can use ma-
chine learning to analyse the measurement data [12]. Another idea is to learn phase
transitions in many-body quantum systems, a fundamental physical problem with
applications in the development of quantum computers [13]. Machine learning has
also been found useful to discriminate between quantum states emitted by a source,
or transformations executed by an experimental setup [14–16], and applications are
plenty.

In this book we use the term ‘quantum machine learning’ synonymously with the
remaining CQ and QQ approach on the right of Fig. 1.1. In fact, we focus mainly

Fig. 1.1 Four approaches
that combine quantum
computing and machine
learning
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“Quantum ML” means different things depending on what 
the data source and algorithm’s physical substrate are

• Anecdotally, most experimental and theoretical work in QML focuses on 
using a quantum processor to analyze classical data (“CQ”).
• Also almost certainly the least promising area for study, especially for 

HEP (large datasets, science motivations not well-aligned).
• Analyzing quantum data on a classical machine (“QC”) usually becomes 

a control problem, or a program optimization problem.
• Analyzing quantum data with a quantum processor (“QQ”) makes the 

most sense in the context of analyzing the output of quantum sensors or 
the output of another quantum computer - we can’t store entangled 
states for long periods of time!

QC and QQ — interesting areas to explore at Fermilab!



• Quantum AI for quantum data

• Exciting efforts involve theoretical work on 

enhancing the sensitivity of quantum 
sensors connected by a quantum network 
(SQMS and FQI).

• Very early days although proof of principle theoretical 

and experimental work has been done on optical test 
benches.


• Quantum ML techniques for enhancing 
signal extraction from quantum simulation 
(FQI, joint with U. Trento, CERN).

• No clear advantages discovered yet - may be a 

hammer searching for nails, but potentially 
interesting.

Practical QML (QC and QQ) at Fermilab 
• AI/ML for controlling and optimizing 

quantum computers

• Exciting effort couples to microelectronics and edge 

AI applications to improve quantum readout

• Classical AI for de-noising quantum computations in 

theory calculations and event generators — 
QuantISED program studying quantum computing 
for neutrino scattering calculations


• Classical AI for predicting quantum circuit fidelity on 
noisy hardware - important for HEP field theory 
problems involving extremely deep quantum circuits

34
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Elastic Analysis Facility & Fermilab Computing Facilities

36

• Elastic Analysis Facility @ Fermilab provides resources and  
data-science standard industry tools for AI training and inference 

• Additional GPU resources available on CMS LPC, Wilson Cluster 
• Capable of bursting to O(100k) batch computing CPU cores 

Flechas et al., arXiv:2203.10161  
Benjamin et al., arXiv:2203.08010

https://arxiv.org/abs/2203.10161
https://arxiv.org/abs/2203.08010


Accelerating ML processing
SONIC:


Services for Optimized Network Inference on Coprocessors

• Explore with on-prem, clouds, HPC and also for analysis 

facilities for all types of emerging hardware 
• Testing now on CMS production workflows for Run 3 
• ProtoDUNE production run (~7M) events demonstrates  

> 2x acceleration with GPU 
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Jindariani, Ngadiuba, Pedro, Tran, Comput Softw Big Sci (2019) 3:13


Kljinsma, Pedro, Tran, Mach. Learn.: Sci. Technol. 2 (2021) 035005 

Kljinsma, Pedro, Tran, IEEE/ACM H2RC 2020


Wang,Yang,Flechas,Hawks,Holzman,Knoepfel,Pedro,Tran, arXiv:2009.04509 

Cai,Herner,Yang,Wang,Flechas,Holzman,Pedro,Tran, arXiv:2301.04633

• To alleviate future HEP computing will be bottlenecks - 
enable more powerful algorithms on optimal hardware 

• Coprocessors (GPUs, FPGAs, ASICs, …) naturally 
accelerate ML workloads by orders of magnitude  

• No way to guarantee access to HW at all production sites 

• Leverage industry hardware and tools - provide 
coprocessors as-a-service

Fermilab AI-in-production workshop coming soon! 

Monitoring of 100 GPU run

https://link.springer.com/article/10.1007/s41781-019-0027-2
https://iopscience.iop.org/article/10.1088/2632-2153/abec21
https://ieeexplore.ieee.org/document/9307091
https://arxiv.org/abs/2009.04509
https://arxiv.org/abs/2301.04633


Program context
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“Fast” ML at the extreme edge
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• ML in specialized embedded architectures 
require in real-time to reduce and filter data


• Optimal data selection enables more efficient 
operation and control, saves lost data, and 
accelerates time-to-discovery

Cutting-edge scientific experiments explore nature 
at the finest temporal and spatial scales 

Leads to data rates far surpassing industry —  
requires developing innovative techniques



Efficient ML hardware software codesign
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QKeras (Google)
Brevitas (AMD)

HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)

https://pypi.org/project/hls4ml/
682 Github stars, 
580 downloads last month

Enabling efficient algorithms and workflows for non-experts into hardware
https://fastmachinelearning.org/hls4ml


https://pypi.org/project/hls4ml/
https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/1905.03696
https://arxiv.org/abs/2206.07527
https://fastmachinelearning.org/hls4ml


hls4ml for near-detector, low-latency
hls4ml in FPGA applied broadly across the sciences and beyond (more on this later)

HEP experiments, accelerator control, magnet training, nuclear physics, microscopy/material sciences, 
quantum controls/readout, fusion, … 
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• Run 3 displaced muon ID enables 
completely new capability; 
muon momentum regression cuts 
rate by > 2x for HL-LHC 

• Active program  
• Applications for Run 3 & HL-LHC 

from low-level data compression 
to cluster calibration to high level 
physics topology selections to 
anomaly detection

Ngadiuba, Tran et al., JINST 13 P07027 (2018)

https://fastmachinelearning.org/hls4ml


Ding, Hawks, Junk, Mitrevski, Wang, Yang, IEEE NSS

Region of Interest

LHC Trigger - CMS and ATLAS
DUNE Supernova 

Filter + MMA

Per wire ROI 
finder for 
extracting low 
energy neutrino 
signals

https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
https://fastmachinelearning.org/hls4ml
https://www.eventclass.org/contxt_ieee2022/scientific/online-program/poster-session?s=N-03#e1016


hls4ml for on-sensor/detector AI
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• First design and implementation 
of modern DL for HEP on ASIC 

• Enables powerful non-linear 
data compression schemes on 
detector; better trigger primitives 
downstream 

• Chips fabricated and tested, 
performed well under functional/
radiation validation

Data compression encoder 
ASIC for CMS HGCal 

Fahim ECA 

Herwig, Hirschauer, Kwok, Ngadiuba, Tran, et al., 

IEEE Trans. Nucl. Sci. 68, 2179 (2021)


Dickinson et al. CPAD talk

On-detector/sensor AI can be a game-changer for extreme environments 
Extreme data bandwidths, radiation environments, low power, cryogenic, etc.


Pushing state-of-the-art of technology

See more in Farah’s talk next! 

Goal: 40 MHz pixel detectors
Other applications:  
Quantum readout in cryo

Sensors for light sources

etc.

Advance sensing technology  
in AI+Microelectronics 

Analog NNs, spiking/neuromorphic, 

new devices/materials,…

https://ieeexplore.ieee.org/document/9447722/
https://indico.bnl.gov/event/17072/contributions/70204/


Outline

• Vision & strategic drivers

• AI Project Office and program organization 

• Program milestones and highlights

• Leveraging unique & core capabilities
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Fermilab AI strengths
• Expertise in state-of-the-art detectors, accelerators, and device readout  

synergistic with real-time, edge AI and intelligent sensing 
• Complementary to supercomputing and HPC facilities 
• Strong community around “Fast ML” collective in the past 4-5 years  

• Additional focus areas w/strong connections to (FNAL-led or other) AI centers 
• Automated operations and digital twins — accelerators and other large 

experiment controls 
• Needs for science  

• Automated scientific method and discovery 
• Uncertainty quantification (error bars), Bias/domain shift (domain 

adaptation)
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http://fastmachinelearning.org


Grand challenges towards AI centers
• Real-time edge AI center driven by grand scientific challenges 

• A multi-faceted DUNE program sensitive to extremely rare signals 

• Supernova burst, proton decay, neutrinoless double beta decay


• LHC and future energy frontier experiments that can analyze every collision (e.g. 
complete 40MHz readout)


• Automated accelerator complex driven by AI agents and digital twins

45



Grand Challenges in HEP and beyond
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DUNE

Quantum Material Discovery

Fusion

EIC

LHC

Accelerators Neuroscience



Grand Challenges in HEP and beyond
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DUNE

Quantum Material Discovery

Fusion

EIC

Examples of on-going DOE awards 
● READS for Fermilab accelerator controls [DOE HEP] 
● Extreme data reduction at the edge: CMS and 4D 

Transmission Edge Microscopy [DOE ASCR] 
● Autonomous triggers for sPHENIX/EIC [DOE NP] 
● Efficient AI from physics phenomena [DOE HEP] 
● Smart Pixels [DOE HEP] 

+ collaborations for other areas (quantum readout, fusion, …)

● Development of unique techniques to 
democratize edge AI, build benchmarks and 
community tools (hls4ml, open data, SONIC, 
DeepBench, Fast ML benchmarks,…) 

● Good partnerships w/multi-disciplinary 
collaborators in electrical/computer engineering, 
core AI, computing (HPC labs), and industry  

● Connected to other research focus areas on 
robust AI, domain shift, UQ

LHC

Accelerators Neuroscience



Workforce development and outreach
• Focused on bridging the gap between AI and HEP researchers


• AI associate program has brought researchers from different 
backgrounds (CS, ECE) to Fermilab than usual


• Multi-disciplinary collaborations cross-pollinate research teams and 
backgrounds


• Outreach, education, tech transfer 
• Major thrust of program is developing tools for science and industry 

• hls4ml tutorials, demos, and materials are a  

part of graduate school curriculum for ECE class,  
physics and engineering schools and conferences,  
and broader tech conferences
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Connection to society and industry
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Connection to society and industry
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Fig. 2: Flow diagram representing the activities carried out in this work.

and in the horizontal plane at fixed height. The diversity of the
Dataset is further increased by rotating the sample in a range
of ±10� with respect to its long-side axis and by displacing
it by ±2cm from its ideal position under the antennas arch.

For each sample, the fifteen elements of the triangular upper
part of the 6 ⇥ 6 S-matrix are recorded. Since each of these
elements is a complex number with real and imaginary parts,
each sample in the Dataset is a vector of 15⇥2 = 30 features.

The second block in Fig. 2 uses the Dataset to determine
the best ML algorithm for the classification of the samples.
As a preliminary step, the Dataset is shuffled and split in a
Training Set made of 80% of the data and a Test Set composed
by the remaining 20%. To keep these subsets balanced, their
number of “contaminated” and “free” samples are the same.
Next, standardization with StandardScaler [10] is applied first
to the Training Set, then to the Test Set.

With the standardized Training Set, two binary classifiers
are trained: a Support Vector Machine (SVM) [15] and a Mul-
tilayer Perceptron (MLP) [11]. The SVM is chosen because it
is easy and fast to train, since it has only two hyper-parameters
if the Radial Basis Function (RBF) kernel is used (the regu-
larization parameter C and the kernel-specific parameter �),
and because it can be used to judge on the suitability of ML
altogether to solve the problem at stake [11]. In addition, SVM
has been applied effectively to other detection problems using
microwaves, like breast-cancer monitoring [12]-[14]. MLP is
chosen as the second classifier because, although slightly more
difficult than SVM to train, it is more suitable for a real-time
hardware implementation, which could favor this choice in
case the discriminating capacity is satisfactory.

The key points of the SVM training procedure are [16]:
1) consider the Radial Basis Function (RBF) kernel;
2) adopt a loose grid with 5-fold cross-validation (CV) and a

fine grid with 10-fold CV;
3) use CV and Grid-Search to find the best hyper-parameters

(C, �) that maximize the CV accuracy;
4) train the SVM on the entire Training Set with best (C, �).

Regarding MLPs, we designed three architectures, each with
30 Units in the Input Layer (as many as the number of features)

and only one Sigmoid Unit in the Output Layer to let the
MLP work as a binary classifier. The three MLPs differ in the
number of hidden layers: 1, 2 or 3. More than three hidden
layers would not probably bring about any advantage [18].

Training these MLPs with Grid-Search would be too time-
consuming because of the many hyper-parameters to tune.
Therefore, we used Bayesian Optimization (BO), also known
as Sequential model-based optimization (SMBO), thanks to the
Hyperopt Library [17]. The training procedure is as follows:
1) define constant non-tunable hyper-parameters: Adam Op-

timizer, Binary Cross-Entropy Loss Function, L2 Weight
Regularization (active when Regularization Parameter is
greater than 0), 1000 as maximum number of Epochs;

2) define loose and fine grids for each tunable hyper-
parameter: number of Units per Hidden Layer as powers
of 2; Relu, Selu, and Tanh as Activation Functions; He
Normal, Lecun Normal, and Glorot Normal as Weight
Initializers; Weight Regularization Parameter from 0.0 to
0.1 in logarithmic scale; Dropout Rate from 0.0 to 0.55;
10, 50, and 100 as Batch-size;

3) carry out 5-fold CV and BO to select the most promising
hyper-parameters that minimize the validation loss. Use
early-stopping to monitor the validation loss, with 10
epochs of patience and a triggering condition of 0.002;

4) train new MLPs from scratch with the promising hyper-
parameters on 75% of the Training Set, using the 25% as
Validation Set (arbitrary choice). At the epoch that provides
the lowest validation loss, weights and architectures of
the model are saved for a possible subsequent hardware
implementation. The saving procedure is not done directly
during the 5-fold CV training phase because it would have
slowed it down.

To perform the ML experiments with the two kinds of
classifiers, we used various Python libraries, of which the main
ones are: scikit-learn 0.21.3, keras 2.2.4, and hyperopt 0.1.2.

As a final step, to evaluate and compare the generalization
performance of the SVMs and the MLPs, the most promising
models (those with the highest validation accuracy) have been
tested on the held-out 20% of the Dataset.

Authorized licensed use limited to: Contact Fermilab Library for help  library@fnal.gov ...Use JACoW or INSPIRE to download conference papers.. Downloaded on August 26,2022 at 17:11:23 UTC from IEEE Xplore.  Restrictions apply. 



Next steps and collaborations 
• Step 1: Continue delivering cutting edge AI science and technology  
• Collaborations and partnerships 

• Large community of HEP universities and labs 
• Strong computer science and engineering collaborations and growing! 

• University groups and national labs  
• Industry connections  

• Established collaborations with hardware and software industry leaders:  
Nvidia, Microsoft, AMD/Xilinx, Siemens/Mentor,… 

• Developing connections with application areas, e.g. important and large 
Siemens customer led to common projects, Hawkeye360 (Satellites), etc. 

• Continue to build up more local connections, particularly with UChicago and ANL
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Executive summary (reprise)
• Fermilab AI/ML program focused on accelerating science 

• Program pillars connect algorithm advancements with sensing, computing, and 
operations to solve HEP challenges


• Identified areas where Fermilab contributes to the greater DOE AI needs 

• AI Project Office coordinating overall strategy and building community 

• Portfolio of research strong case for AI center involvement


• Center lead would focus on real-time AI and edge sensing 

• Additional focus areas could complement other centers (digital twins, automated 

discovery and design) 

• Modest funds needed to seed efforts during upcoming critical 1 year period

• Opportunities to develop collaborations & projects focused on core AI research, 

strategic HEP applications, and industry/academic partnerships
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Extra
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Machine learning methods allows to devise accurate nuclear wave 
functions suitable for quantum Monte Carlo calculations that do not 
scale exponentially with the number of nucleons


H = E 

Understanding how protons and neutrons self-organize to form atomic nuclei requires solving the nuclear 
many-body Schrödinger equation

Light and medium-mass nuclei's energy and spatial density distributions are in excellent agreement with those 
obtained utilizing exact-diagonalization and diffusion Monte Carlo approaches.  

An artificial neural network wave function that involves additional 
``hidden'' degrees of freedom has been introduced to improve the 
accuracy of the solution systemically 

 HN (R,S) ⌘ det


�v(R,S) �v(Rh, Sh)
�h(R,S) �h(Rh, Sh)

�

PHYSICAL REVIEW RESEARCH 4, 043178 (2022)



CaloDiffusion: ML for Simulation
• Full detector simulation using Geant4 is 

too slow to keep up with HL-LHC data 
volumes and computing constraints 

• Use generative ML techniques to 
increase speed & retain accuracy
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• Diffusion model: avoids pitfalls of GANs, high quality output 
• w/ improvements (preprocessing, RZ conditioning, cylindrical convolutions, 

cosine noise schedule), competitive results on CaloChallenge dataset 
• Next steps: latent space optimization, reduce # diffusion steps, hybrid 

approaches w/ classical FastSim

O. Amram, A. Lewis, K. Pedro



Inference acceleration and real-time applications

• NuSONIC 
• Accelerate ML inference using GPUs/FPGAs

• Processing ProtoDUNE data using GPUs on the google 

cloud.

• Saturation from network bandwidth well understood and 

important for grid jobs

• Real-time applications 

• Physics Inspired Neural Nets (PINNs). 

• AI for event triggering (new DOE AI funding)

• Applications for ICEBERG, SBND and DUNE
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Wang et al. Front. Big Data 3 (2021) 604083      

Cai et al. arXiv:2301.04633


  

https://www.frontiersin.org/articles/10.3389/fdata.2020.604083/full
https://arxiv.org/abs/2301.04633


L-CAPE (Linac Conditional Anomaly Prediction of Emergence)
• The ‘L-CAPE’ effort is to use ML to automate 

accelerator operations which will result in higher 
efficiencies and cost savings.   

• The challenge is being able to use large, diverse 
data sets with changing nominal operating points, 
to generate an accurate ML accelerator model.  
The ML needs to be accurate, reliable and nearly 
‘real time’. 
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• The work has focused on an LSTM approach.  Using over one year’s 
worth of FNAL Linac data (2022), we have been able to train performant 
ML models.  The results are encouraging, with most common Linac faults 
being identified, and some with actionable precursors. 



Real-time Edge AI for Distributed Systems (READS)
• Project 1: Main Injector Enclosure Beam Loss 

Disentangling 
• Infer real-time the machine origin of beam loss (Main 

Injector or Recycler) → upgrade machine protection, 
uptime and tuning 

• Project 2: Mu2e Slow Spill Regulation 
• Improve the linearity of the Delivery Ring resonant extraction 

(Spill Duty Factor, SDF) → improve Mu2e experiment data 
collection
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• Solution 
• Create and stream distributed readings from around the 

accelerator complex to perform near real-time inferences 
using fast FPGA hardware



True Δ phase (deg)

Linac RF Optimization with ML
• Linac requires daily tuning of RF 

parameters to deliver stable beam energy 
with minimal particle loss 

• Currently done manually: limited by expert 
availability and cannot optimize in multi-
dimensional parameter space
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• We are developing ML models that predict RF parameter settings to keep 
beam energy constant and minimize emittance for automated tuning 

• Successful proof-of-concept test of single cavity phase regulation [link] 
• Multi-cavity modeling promising, working on incorporating time-drift effect 

https://www-bd.fnal.gov/Elog/?orEntryId=230768


GMPS AI (LDRD)
• The goal of the LDRD was to test 

the suitability of an FPGA-based 
“realtime” AI controller for the 
Booster Gradient Magnet Power 
Supply (GMPS). 

• We chose to study reinforcement 
learning (RL) methods and use 
on-chip AI models – both are 
interesting challenges. RL models 
are notoriously data-hungry (can 
we produce enough data for 
training?), and an on-chip 
solution required modifications to 
HLS4ML in order to work on 
Intel-based FPGAs. 
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• The LDRD wrapped up in 2022 without full 
deployment. We are seeking additional funds to 
extend the project. However, we demonstrated the 
suitability of the FPGA platform and tested digital 
twins for training. 

• See Phy. Rev. Accel. Beams 24, 104601



AI/ML for NuMI Beam Variable Predictions
• The goal of this project is to predict the 

NuMI beamline variables by taking 
account downstream muon monitor 
signals. 

• These predictions give an independent 
measurement of the beam variables to 
monitor the quality of the beam 
delivery and also to detect the 
anomalies. 

• In this approach, we use artificial 
neural networks to build a model to 
predict the proton beam position, the 
beam intensity and the horn current.
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• Our results demonstrate the capability of 
developing useful ML applications for 
future beamlines such as DUNE 

• This ML application can be used to reduce 
the neutrino flux systematics with the help 
of simulation studies



Deep Universal Domain Adaptation for cosmic Analysis
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• Goal: 
• Adapt neural models from training sets to observations. 

• Problem:  
• Training inevitably incurs bias in neural models. 
• Training data sets (either simulated or observed) are inevitably 

different than new observational data. 
• New Approach:  

• Universal domain adaptation is a new DA method that a) 
reduces the need hyperparameter tuning and b) reduces the 
requirement for overlap between training and observed data. 

• Applications:  
• Objects: Strong Lenses, Spectra, Quasars, Galaxy Clusters 
• Surveys: DES, LSST, CMB-S4 
• Connections: particle inference 

• Unsupervised domain adaptation from gradient reversal is used 
for Stealth SUSY background estimation

Deep Universal Domain Adaptation 
Ciprijanovic, Lewis, Pedro, Madireddy, Nord, Perdue, Wild 

(2022 in Neurips Workshop, 2023 in prep for journal) 
CMS, Stealth SUSY search arXiv:2102.06976

Example images of 
simulated galaxy 

morphologies with 
different levels of 
telescope noise.

Confusion matrix for 
classification of galaxy 
types using DUDA

High noise Low noise

https://arxiv.org/abs/2102.06976


Self-Driving Telescopes
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• Goal: 
• Adaptively optimize telescope survey scheduling  

• Problem:  
• Hand-crafted observation schedules are prohibitively 

expensive and don’t adapt to new info from environment or 
from data. 

• New Approaches:  
• Unsupervised Graph Neural Networks: optimize an 

observation strategy to constrain cosmological parameters. 
• Supervised Reinforcement Learning: build a decision-

making algorithm to prepare or adapt observations. 
• Applications:  

• Instruments: Imaging, spectroscopic, interferometric 
• Surveys: Queue observations, DES, LSST, CMB-S4, + 
• Connections: accelerator tuning

Spectroscopic Survey Optimization 
Cranmer, Melchior, Nord, 2021 (Neurips workshop)

Optimized estimates of 
cosmic matter density for 
many different simulated 
universes.

A network of 
galaxies optimally 

selected for cosmic 
matter estimation.



Automated Instrument Design
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• Goal: 
• Automate design of telescope optics 

• Problem:  
• Humans run hand-crafted, time-consuming simulations 

in expensive software to make guesses at optical system 
setup. 

• New Approach:  
• Combine binary trees and simulation-based Inference 
• We can both arrange optics (with tree-based decision-

making) and predict optical element shape parameters 
(with SBI). 

• We produce probabilistic outputs for optical systems so 
the human can make an informed decision. 

• Applications:  
• Instruments: Imaging, spectroscopic, interferometric 
• Surveys: future survey instruments 
• Connections: accelerator design, symbolic regression

Optical System Design 
Cohen (HS student) and Nord, 2023 (in prep.)

Schematic example of 
generating an optical 
system with our algo. 
Green arrows show 
optimized tree 
traversal.

Overview of algorithm. Tree 
produces optical system. 
Posteriors are of element shape 
parameters.

Example prediction for design 
of an optimized 3-element 
system.



DeepBench - A simulation library for cosmology focused dataset generation
• Motivations for DeepBench: 


• Beginner-friendly

• Faster training convergence

• Fills gap in benchmark dataset complexity


• Useful features:

• Astronomical object profile simulations of varying complexity

• Flexible parameter input requirements

• Quick creation of benchmark dataset


https://github.com/AeRabelais/DeepBench
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The code itself has 3 main pieces: Catalogue and Collection (manages all 
images and exports the final dataset), Image (composes the objects into a 
single file and adds noise if needed), and individual Objects (generate 
geometric shapes and astronomical objects).

   Geometric Image          Galaxy Image       Gravitational Lens Image 
 

Votberg, M., Lewis, A.,  
Nord, B.


