

Angle Dependent Electron Lifetime Measurement and Millicharged Particle Detection in SBND

Andrew Schwartz, they/them SULI Fall 2022 Presentations December 7, 2023

Contents

 Electron Lifetime Angle Dependency Measurement Background

Prior work

My progress

Next Steps

Millicharged Particle Faint Track Detection

Background

Prior work

My progress

Next Steps

Electron Lifetime Measurement: Background

- Short Baseline Near Detector (SBND) is filled with liquid argon
- Neutrinos (or other particles) interact, releasing electrons
- Electronegative contaminants absorb electrons from interactions
- Electron Lifetime: τ
- Measure with cosmic muons (MIP)

Electron Lifetime Measurement: Prior Work

- Technique to calculate τ from simulation developed in other LArTPCs
- Built upon work done by Lan Nguyen

Fig 2. Exponential decay fit: $e^{-t/\tau}$

Electron Lifetime Measurement: My Progress

• Angle dependencies

5

- Demonstrates edge effects (fig 1)
- Suggests a cut of angles from 30 to 70 degrees (fig 2)

Fig 1. dQ/dx at high angles from perpendicular

Fig 2. Electron Lifetime by Angle

Electron Lifetime Measurement: My Progress

- Angle dependencies
- Match muon tracks to CRT position

Fig 1. Tracks & Matched CRT Positions

Electron Lifetime Measurement: Next Steps

- CRT Strip lifetime measurement
 - We are curious if specific CRT strips/groups of strips will provide better accuracy
- Larger sample data

7

Some time & angle bins have too few points to be fit well

Fig 1. Poor fit due to low statistics

Millicharged Particle Detection: Background

- Theorized particle with fraction of the electron charge
- Much weaker signal than fully charged particle $\binom{1}{q^2}$
- EDGES anomaly recently is explainable by these particles

Millicharged Particle Detection: Prior Work

- Simulation in LArSoft
- Detection methods:
 - 2-hit
 - Faint Track

Millicharged Particle Detection: My Progress

• GPU track finding

‡Fermilab

Millicharged Particle Detection: Next Steps

- GPU signal generation
 - Quadratically more events are needed as charge decreases
- More sophisticated track finding algorithms
 - Statistical analysis
 - Compare to background fluctuation

Thank you!

