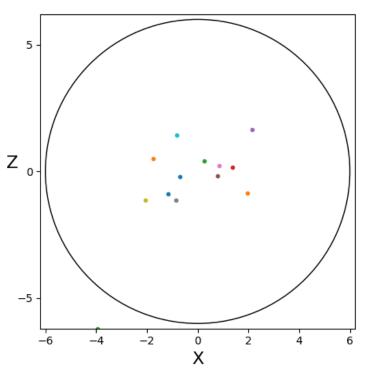


Comparing ACHILLES to MINERvA

Julia Ryshkewitch SULI Presentation Fall 2022 07 December 2022

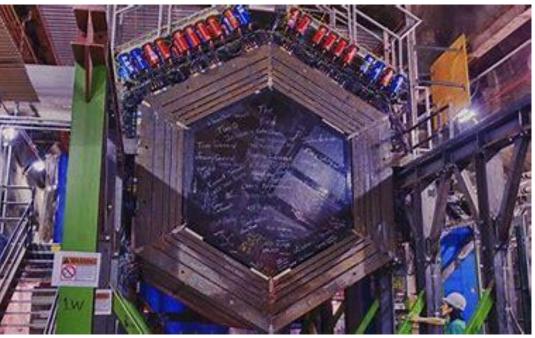
Neutrinos


- New generation neutrino experiments are setting out to measure the CP-violation, oscillation parameters, and mass ordering of neutrinos.
- These experiments require percent level precision.
- Because of this precision goal, simulators are needed for comparison of data.

Fermilab

Lepton Event Simulators

- The process of modeling neutrino-nucleus interactions starts with an estimation assuming the nucleons are free.
- However, the nucleons actually act as a many-body quantum system.
 - To account for this, a well-defined factorization scheme can be used (such as the impulse approximation), but these include estimations often times from experimental data.
- The final state interactions (FSI) of the nucleons also have to be accounted for, and there are traditionally two approaches:
 - 1)Solving the Kadanoff-Baym integro-differential equations analytically, but this includes truncations and estimations, making it difficult to account for the theoretical error.
 - 2)The intranuclear cascade approach, which attempts to solve the transport equation numerically. With this the nucleon's propagation are treated as discrete quantum mechanical scatterings and then evaluated using classical scattering.



MINERvA

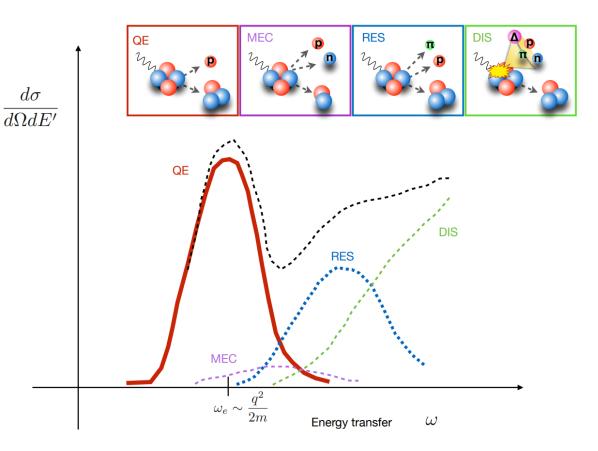
- The MINERvA experiment took place at Fermilab.
- The experiment set out to make measurements of the neutrino-nucleus cross section, which is important quantity to have in order to make steps towards making measurements of neutrino oscillation parameters.

ACHILLES

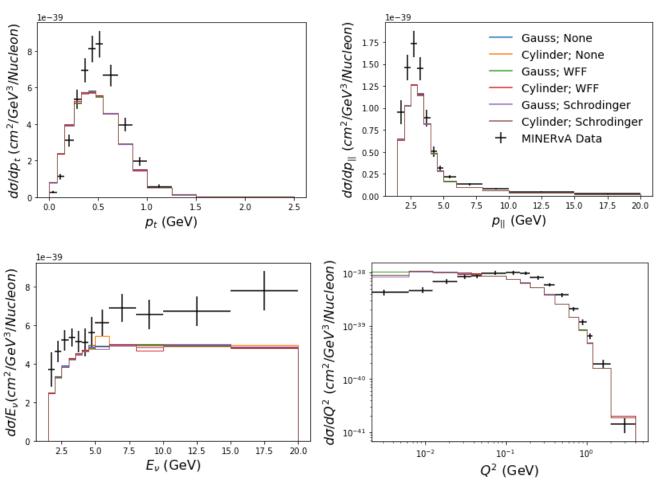
- ACHILLES is a fully theory-driven lepton event generator that is in its early stages of development.
- ACHILLES uses the intranuclear cascade approach to simulate the FSI.
- When running the cascade there are several options:
 - Nucleon-nucleon interaction model: Gaussian or Cylinder.
 - Nuclear potential: WFF, Schrodinger, or none.

1								
dob	ageb	dh dh	d888888b		db	d88888b	10000	
	b d8P Y8		88'	88	00	88'	88' YP	
880008						8800000		
88~~~8		0000000	88	00				
	6 60 8 Y8b d8	00~~~00	88 .88.	00	00	00~~~~~	db 8D	
			.88. Y8888888P					
I IP I	P 166P	TP TP	19999995	100000P	100000P	1000000	88881	
+								
ļ		1000000						
.d888888888888888888888888888888888888								
ļ								
			888888888					
			888888888					
`Y			888888888					
1			888888888					
1	`Y8		888888888					
1			888888888					
1		`Y88	8888 88	88 88Y'		Y8888888	888888	
1		.d8888	888888888 8888888888888888888888888888	88888888	b.	Y888888	888888.	
ĺ		d8888888	888888888	88888888	88b.	888888	8888888	
İ	.d8	88888888	888888888	88888888	88888b	8888888	8888888	
İ.	.d888	88888888	888888888	88888888	888888	8888888	888888D	
i			888888888			8888888		
ĺ	d88888	88888888	888888888	88888888	888888	Y888888	888888	
i	d888888	P' d88	888888888	88888888	88888P	888	88888	
i	8888P		888888888			88	8888	
i	888P	.d88888	888888888	88888888	888P	88	88Y	
i	888b .	d8888888	888888888	88888888	888	88	88P	
i	Y88 d8	88888888	888888888	88888888	8888	8	88	
i	`8' d88	88888888	888888888	88888888	8888		88	1
i	888	88888888	888888888	88888888	888P			
i	888	88888888	88888P	Y88888	88P			
i	d888	88888888	88888	Y88888	8P			
88888888888888888888888888888888888888								
d88888888888888 Y8P								
l 888888888P 8								
d888P								
i								
÷								
1								
Versio	n: 1.0.0							
		Isaacso	n, Willia	n Jav. A	lessandr	o Lovato		
1 Auction	3. 303maa	1 1500050	n, neccea	" Juj, n	cessanan	o Lovalo	,	

S: Josnua Isaacson, William Jay, Alessandro Pedro A. Machado, Noemi Rocco

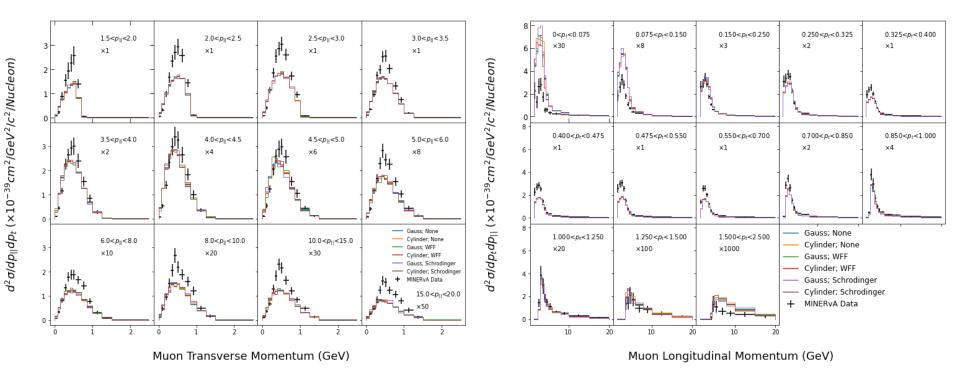

Data Generation

- The ACHILLES data was generated by running the code and then reading the output with a HepMC reader.
- The HepMC reader allows each particle's momentum and energy to be obtained for each event.
- For each chosen observable, histograms were filled for the number of events in ranges given by the bin sizes in the experimental papers.
- The code was reran and six different data sets were plotted for the six different run option combinations.


Cross Section Contributions

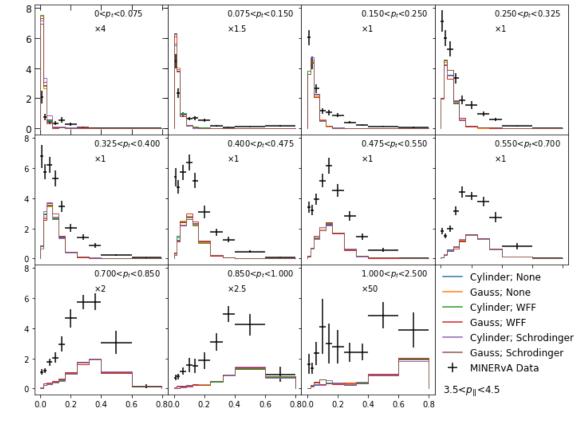
 ACHILLES implements QE contributions and a small amount of 2p2h contributions but not contributions from resonance production or deep-inelastic scattering.

1D Cross Sections


The observables plotted against are muon transverse momentum, muon longitudinal momentum, reconstructed neutrino energy, and momentum transfer.

•

$$E_{\nu} = \frac{m_n^2 - (m_p - E_b)^2 - m_{\mu}^2 + 2(m_p - E_b)E_{\mu}}{2(m_p - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})},$$
$$Q^2 = 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu}) - m_{\mu}^2.$$


2D Cross Sections

Fermilab

3D Cross Sections

 ΣT_p (GeV)

 In all the graphs we see an overestimation in low ranges of muon transverse momentum.

 $d^3\sigma/dp_tp_{||}d\Sigma T_{\rho}~(\times 10^{-39}cm^2/GeV^3/c^2/Nuc/eon)$

Conclusions

- Considering that ACHILLES is in its early stages, it compared fairly well to the MINERvA data for a QE generator.
- The overestimation can most likely be accounted for by the fact that effects of the FSI are neglected in the intranuclear cascade.
- This analysis can be revisited by the ACHILLES authors in the future when other contributions are implemented in the code.

