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• Quantum simulation of lattice gauge theories is worth 
investigating.


• It's still too early to decide which simulation schemes 
will be the most efficient, and different schemes 
should be investigated.


• Simulation schemes can be roughly divided into 
digital and analog quantum simulations.  I focus on 
digital schemes.

Motivations and background
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• Digital simulation applies quantum gates to realize the 
discrete time evolution using the Suzuki-Trotter 
approximation. 


• So far, most efforts have focused on circuit-based 
methods.


• In quantum computation, there are alternative 
quantum computation (QC) schemes: measurement-
based QC, adiabatic QC, etc.
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• Introduced by Raussendorf and Briegel (2001). 


• Also called one-way quantum computation.


• An alternative computational scheme that replaces 
circuit-based computation.


• Uses quantum teleportation and adaptive 
measurements on a resource (cluster) state.

Review: measurement-based 
quantum computation (MBQC)
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Gate teleportation

• X-eigenstate 


•  is an arbitrary 1-qubit state


• Entangle  and  by a controlled-Z gate .


• Measure the first qubit in bases .  The measurement 
outcome is  corresponding to .


• The state on the second qubit becomes 


.


Up to  and , the state and the unitary transformation  are 
teleported.   is an example of a byproduct operator.
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Adaptive measurement

• Suppose that an earlier measurement in a bigger circuit had 
produced the state , where  is the 
known measurement outcome.  Suppose also that we wish to 
obtain .


• Substituting this to the teleportation formula , we 
get .


• To get the desired state  (up to byproducts), we need 
to set  to .   We need to adjust the measurement 
angle  adaptively according to earlier measurement outcomes.
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Resource state

• Measurement based quantum computation is performed by 
adaptive one-qubit measurements on a resource state.


• As a resource state, one usually considers a graph state 


.


• For a large graph with a repeated pattern, the graph state is 
called a cluster state.


• Graph states and cluster states can be characterized by 
stabilizers.

⨂
edge

CZedge | + ⟩⊗vertices
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• Measurement-based quantum computation is 
universal:  it can reproduce any unitary operation over 
an arbitrary number of qubits.


• There exist versions of MBQC and cluster states with 
discrete and continuous-variable qudits.


• Large-scale  (continuous-variable) optical 
cluster states have been experimentally generated.

𝒪(104)
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Review: Hamiltonian lattice  
gauge theory in 2+1 dimensions

• Cell complex for a square lattice.


• 0-cells 


• 1-cells 


• 2-cells 


• Degrees of freedom (qubits) are on 
1-cells (edges) . 

σ0 ∈ Δ0

σ1 ∈ Δ1

σ2 ∈ Δ2

σ1 ∈ Δ1

σ0

σ1 σ2
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• Hamiltonian:  with 

.


• Gauss law constraint: for any , 


.


• The  limit is Kitaev’s toric code.
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• Generalization:  gauge theory in 
2+1 dimensions =     
Wegner’s model : higher-form 
gauge theory in  dimensions.  The 

 case is the Ising model.

ℤ2
M(3,2) ⇒

M(d,n)
d

n = 1
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Trotterization
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• Ideally we want to implement the continuous time evolution  for 
any .  Decompose .   and 

 do not commute.


• In digital quantum simulation (such as by quantum circuits), we 
implement  and  separately.


• Suzuki-Trotter approximation: .  


• We want to realize  and .
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• Claim: we can implement the Trotterized 
time evolution  by


1. preparing a generalized cluster state that 
reflects the spacetime structure of the 
gauge theory


and then by


2. performing adaptive single-qubit 
measurements adaptively in a prescribed 
pattern.

(e−iH1t/ne−iH2t/n)n

Proposal: measurement-based 
quantum simulation of abelian 
lattice gauge theories
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Resource state for   lattice 
gauge theory in 2+1 dimensions

ℤ2
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• Place one qubit on each 1-cell 
 and 2-cell  on 

a 3d cubic lattice.


• Entangle the neighboring 1-cells 
and 2-cells by controlled-Z 
gates.  

 


• A version of three-dimensional 
cluster state.


• Stabilizers  
and .

σ1 ∈ Δ1 σ2 ∈ Δ2

|gCS⟩ = ∏
σ1⊂∂σ2

CZσ1,σ2
| + ⟩⊗Δ1∪Δ2

K(σ2) = X(σ2)X(∂σ2)
K(σ1) = X(σ1)X(∂*σ1)

K(σ1) |gCS⟩ = K(σ2) |gCS⟩ = |gCS⟩



Measurement pattern = 
simulation protocol
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• Trotterized time evolution is 
implemented by the 
measurement pattern and 
adaptive choices of the 
measurement angles  to 
absorb minus signs .


• Main result of the paper.  
The resource state reflects 
the spacetime structure of 
the simulated gauge 
theory.

ξ
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• The resource state is a cluster state tailored for the simulation of a 
given abelian lattice gauge theory.  In our paper, we showed that 
it is an SPT (symmetry-protected topological) state protected by 
higher-form symmetries.


• There is an anomaly inflow between the simulated theory and the 
resource state (work in progress).


• Generalizations to  gauge groups and the Kitaev Majorana 
chain are given in the paper.  (Other generalizations in progress.)


• One can derive a correspondence between the resource state 
and the classical partition function.


• Possible experimental realizations may use (continuous-variable) 
cluster states created optically.

ℤN

Other aspects and generalizations 
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Backup slides
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• Often, the computational power of a resource state can be  
attributed to the symmetry-protected topological (SPT) order.  
Examples: AKLT state and 1d cluster state protected by  .


• Claim: the natural resource state (qubits on - and -cells) 
for simulating Wegner’s model  is protected by global  

- and  -form symmetries.  (For , 
shown by Yoshida.)


• For the  gauge theory in  dimensions , they are both 
one-form symmetries generated by membrane (surface) operators  

  with 2-cycle  ( ) and  with dual 2-

cycle  ( ).

ℤ2 × ℤ2
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SPT order of the resource state
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• The SPT order of the resource state for  can be 
demonstrated by showing that “gauging” the symmetries of the 
resource state and the product state give rise to distinct 
topological orders.  [Levin-Gu, Yoshida]


• Other evidence for the SPT order includes


• appearance of a projective representation on the boundary


• appearance of a projective representation in the tensor 
network representation of the resource state


• Anomaly inflow between the resource state and the simulated 
theory.  (In progress with Mana and Sukeno.)

M(d,n)
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Toward experimental realization
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• The measurement-based approach requires only 
simple interactions (such as Ising interactions) 
between qubits because interactions are only used to 
create the resource state.


• Since the resource state includes the time direction, 
the measurement-based approach requires more 
qubits than the circuit-based approach.


• Possible experimental platforms: 


• Lattices formed by cold atoms


• Continuous-variable cluster states created optically



• Simulation time is linear in the number of Trotter steps in both 
schemes.


• 


• 


• In the measurement-based scheme, the resource state is created 
by a finite-depth circuit consisting of CZ.  The number of 
necessary qubits grows linearly in the number of Trotter steps.

TMB ∼ (#Trotter steps) × Tmeas

TCB ∼ (#Trotter steps) × TCZ

Comparison with circuit-based simulation
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• Exact diagonalization is only possible for up to tens of sites.


• Using tensor network methods, low-entanglement states are 
accessible for up to thousands of sites.


• In MBQS, the number of required qubits scales linearly with the 
number of Trotter steps.


• MBQS may have an advantage for problems with high-
entanglement states if there are sufficiently many  qubits 
of good quality. 

𝒪(104)

Comparison with classical simulation
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• More general gauge theories: non-abelian gauge groups, fracton 
models.


• More general fermions.


• Relate SPT order to computational power.


• Experimental realizations.


• Quantum simulation on cloud quantum computers with 
(adaptive) mid-circuit measurement capabilities.

Future directions
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