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Motivation

• Lattice QCD calculations are becoming more precise

• QED and isospin breaking corrections are becoming important

• However, introducing QED naively leads to large finite volume errors

• The infinite-volume reconstruction method suppresses these errors

• We use this method to calculate meson and quark mass corrections
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Summary

• Introduce a perturbative method for treating QCD+QED

• Introduce the infinite volume reconstruction method

• Demonstrate that this method works for calculating meson masses

• Discuss a method for dealing with quark mass renormalization
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Perturbative QED

• We introduce QED perturbatively

• By expanding the path integral in the electric charge e, we get

⟨O(T )O(−T )⟩QCD+QED = ⟨O(T )O(−T )⟩QCD

+
e2

2

∫
d4xd4y⟨O(T )Jµ(x)Jν(y)O(−T )⟩QCDSµν(x − y) + ...,

where Sµν(x − y) is the photon propagator.

• We can represent the correction diagrammatically as
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Perturbative QED

• From this expansion, we get

∆m =
e2

2

∫
d4xHµν(x)Sµν(x),

• where, on the lattice,

Hµν(x) = L3
⟨O(t + T )Jµ(x)Jν(0)O(−T )⟩

⟨O(t + T )O(−T )⟩
.

• With infinite-volume hadron states, this definition corresponds to

Hµν(x) =
1

2m
⟨π|Jµ(x)Jν(0)|π⟩
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Finite-Volume Effects

• Even at large distances, when t >> |x⃗ |, Hµν(x) is order 1.

• On the other hand, the photon propagator Sµν(t, x⃗) is not

exponentially suppressed at large t because the photon is massless.

• Therefore, our finite volume errors in ∆m = 1
2

∫
d4xHµν(x)Sµν(x)

will only be power-law suppressed.
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Infinite-Volume Reconstruction

• To get exponentially suppressed finite volume effects, we can

reconstruct the large-distance contributions to ∆m.*

• At large current separation, Hµν(x) is dominated by contributions

from the lowest energy states.

• We choose some cutoff time ts that is large enough that Hµν(ts , x⃗)

is dominated by the single-meson states, but small enough to be

computed on the finite-volume lattice.

• Then we get

Hµν(t, x⃗) ≈
∫

d3x⃗Hµν(ts , x⃗)

×
∫

d3p⃗

(2π)3
e−i p⃗·(x⃗′−x⃗)e−(En,⃗p−mπ)(t−ts ),

with corrections to this formula exponentially suppressed.

* Xu Feng, Luchang Jin (2019)
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Meson Mass Corrections

Figure 1: ∆M versus ts on a 483 × 96 lattice using Iwasaki gauge action and

domain-wall fermions. ”Short” means including only |t| < ts contributions.
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Meson Mass Corrections

Figure 2: ∆M versus ts on a 643 × 128 lattice using Iwasaki gauge action and

domain-wall fermions. ”Short” means including only |t| < ts contributions.
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Future Work

• We need to match our simulation parameters to the physical world

• We need to perform a continuum extrapolation

• To get quark mass corrections, we need to determine QED

renormalization factors
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Quark Mass Renormalization

• In QCD, the quark masses renormalize by a multiplicative constant

mMS
f = Zmmf .

• In QCD+QED, this renormalization is modified. We define ZQED by

mMS
f = Zm(1 + e2f ZQED)mf .

• To get ZQED, we note that hadron masses are

renormalization-invariant.

• Therefore, if we calculate a meson mass shift in MS versus on the

lattice, we should get the same result.

• For example, let ∆mMS
π and ∆mlat

π be the shifts in pion mass caused

by equivalent shifts in the MS and lattice quark masses respectively.

• Then we should have

∆mMS
π = ∆mlat

π .
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Quark Mass Renormalization

• To the leading order, the change in hadron mass, mH , due to a

change in the quark mass mf and introducing an electric charge e is

∆mH =
e2

2

∫
d4xHµν(x)Sµν(x) + ∆mfH3pt

f ,

• where H is the four-point function, and (in the lattice normalization)

H3pt
f = L3

⟨OH(T )ψ̄f (0)ψf (0)OH(−T )⟩
⟨OH(T )OH(−T )⟩

.

• In MS, we can calculate the divergent part of the integral using the

operator product expansion.

• We can compare this with the small-distance (high-momentum)

contribution to this integral from the lattice.
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