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Lattice QCD calculations are becoming more precise

QED and isospin breaking corrections are becoming important
e However, introducing QED naively leads to large finite volume errors

e The infinite-volume reconstruction method suppresses these errors

We use this method to calculate meson and quark mass corrections



Introduce a perturbative method for treating QCD+QED

Introduce the infinite volume reconstruction method

Demonstrate that this method works for calculating meson masses

e Discuss a method for dealing with quark mass renormalization



Perturbative QED

e We introduce QED perturbatively
e By expanding the path integral in the electric charge e, we get
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where S,,, (x — y) is the photon propagator.

e We can represent the correction diagrammatically as
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Perturbative QED

e From this expansion, we get

e
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e where, on the lattice,
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e With infinite-volume hadron states, this definition corresponds to
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Finite-Volume Effects

T

e Even at large distances, when t >> |x]|, H,,(x) is order 1.

e On the other hand, the photon propagator S, (t,X) is not
exponentially suppressed at large t because the photon is massless.

e Therefore, our finite volume errors in Am = 3 [ d*xH,,,,(x)S,.(x)

will only be power-law suppressed.



Infinite-Volume Reconstruction

e To get exponentially suppressed finite volume effects, we can
reconstruct the large-distance contributions to Am.*

e At large current separation, H,,(x) is dominated by contributions
from the lowest energy states.

e We choose some cutoff time t, that is large enough that H,, (ts, X)
is dominated by the single-meson states, but small enough to be
computed on the finite-volume lattice.

e Then we get
H,(t,X) z/d3>?7-tﬂ,,(ts,>?)
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with corrections to this formula exponentially suppressed.

* Xu Feng, Luchang Jin (2019)



Meson Mass Corrections
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Figure 1: AM versus t; on a 48% x 96 lattice using Iwasaki gauge action and

domain-wall fermions. " Short” means including only |t| < ts contributions.



Meson Mass Corrections
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Figure 2: AM versus t; on a 64° x 128 lattice using lwasaki gauge action and
domain-wall fermions. " Short” means including only |t| < ts contributions.



e We need to match our simulation parameters to the physical world
e We need to perform a continuum extrapolation

e To get quark mass corrections, we need to determine QED
renormalization factors



Quark Mass Renormalization

e In QCD, the quark masses renormalize by a multiplicative constant

m'}/'s =Zn,ms.

e In QCD+QED, this renormalization is modified. We define Zqep by
m’;TS = Zn(1 + €} Zqep) myr.

e To get Zqep, we note that hadron masses are

renormalization-invariant.

e Therefore, if we calculate a meson mass shift in MS versus on the
lattice, we should get the same result.

e For example, let Ami}TS and Am!t be the shifts in pion mass caused
by equivalent shifts in the MS and lattice quark masses respectively.

e Then we should have
AmMS — AmPt,
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Quark Mass Renormalization

e To the leading order, the change in hadron mass, my, due to a
change in the quark mass m¢ and introducing an electric charge e is

2
Amy =S / XM () Sy (%) + AmeHP",

e where H is the four-point function, and (in the lattice normalization)

On(T)¥r(0)1¢(0)On(—T))
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e In MS, we can calculate the divergent part of the integral using the
operator product expansion.

e We can compare this with the small-distance (high-momentum)
contribution to this integral from the lattice.

11



