A Tale of Two studies: the Δ resonance and role of tetraquark operators for probing the κ and $a_0(980)$ resonances

Sarah Skinner
August 2, 2023
Carnegie Mellon University
Introduction
Some of the results presented in this talk are published in

Special thanks to my collaborators:

Motivations for Resonances

In this presentation...

- Δ within $N\pi$ scattering
 - need this information for future experiments (DUNE)
 - sets us up for studying $N\pi\pi$ scattering
- $\kappa/\bar{s}u\bar{s}s$ in $K\eta-K\pi$ scattering
- $a_0(980)/\bar{u}u\bar{d}u$ in $K\bar{K}-\eta\pi$ scattering
 - see if tetraquark operators overlap with low energy states

Also check out...

- *The two-pole nature of the $\Lambda(1405)$*, Fernando Romero-López
- *The $\Lambda(1405)$ from lattice QCD*, Bárbara Cid-Mora
- *Hadron spectroscopy and few-body dynamics*, Andrew Hanlon
- *To bind or not to bind*, André Walker-Loud
Methods
Notes on Operator/Correlator Construction

Operator Notes:

• Gluons \rightarrow Stout smearing
• Quarks \rightarrow LapH smearing

Correlator Notes:

• stochastic factorization \rightarrow tensor contraction
• efficient algorithm \rightarrow produce many different correlators
Correlation matrix elements in the same channel share the same FV energy levels:

\[
\langle 0| O_i(t + t_0) O_j(t_0) |0 \rangle = \sum_{n=0}^{\infty} Z_i^{(n)} Z_j^{(n)} e^{-E_n t}
\]

Separate out by solving GEVP of $N \times N$ matrix and eigenvalues are:

\[
\lim_{t \to \infty} \lambda_n(t) \approx b_n e^{-E_n t}
\]

Example ($N_{\pi}, I = 3/2, H_g(0)$):
Fitting methods:

- single-exp: Ae^{-Et}
- double-exp: $Ae^{-Et}(1 + Re^{-D^2t})$
- geometric: $Ae^{-Et}/(1 - Re^{-Dt})$

Ratio:

$$R(t) = \frac{\lambda_n(t)}{C_1(t)C_2(t)}$$
Phase Shifts/Amplitude Analysis

Connect finite-volume to infinite-volume via Lücher:

$$\det[\tilde{K}^{-1}(E_{cm}) - B^P(E_{cm})] = 0$$

- truncate higher waves
- \tilde{K} - related to the usual scattering K-matrix
- B^P ('box matrix') - finite volume irreps
- only works for 2-2 scattering
Results
• CLS Lattice
• Dim \((x^3 \times t)\):
 \[64^3 \times 128\]
• \(a = 0.064\text{fm}\)
• \(m_\pi = 200\text{ MeV}\)
• \(m_K = 480\text{ MeV}\)
• 2000 configurations
• open temporal boundary conditions
• \(N_f = 2 + 1\)
Delta Resonances

\[N_{\pi} \to N_{\pi} \]

Correlation Matrix Information:

\[a_{N_{\pi}}^{l=1/2} \]

- \(l = 1/2 \)
- operators:
 - \(N \)
 - \(N_{\pi} \)
- momenta: \(d^2 = 0, 1, 2, 3, 4 \)

\[\Delta(1232), a_{N_{\pi}}^{l=3/2} \]

- \(l = 3/2 \)
- operators:
 - \(\Delta \)
 - \(N_{\pi} \)
- momenta: \(d^2 = 0, 1, 2, 3, 4 \)
$I = 1/2 \quad N_\pi$

- Grey bands: noninteracting scattering levels (N, π correlators)
- Green dots: interacting levels (N_π, N correlators)
- Filled green dots: levels used for constraining $a_{N_\pi}^{I=1/2}$

\[I = 1/2 \quad N_\pi \]
$I=3/2 \ N\pi, \ \Delta(1232)$

- Grey bands: noninteracting scattering levels (N, π correlators)
- Green dots: interacting levels ($N\pi, \Delta$ correlators)
- Filled green dots: levels used for calculating $a_{I=3/2}^{N\pi}$
Phase Shifts

\[
\delta_{\pi/2}^{1/2} - G_{1u}(0) - G_{1}(1) - G(2) - G(3)
\]

\[
\delta_{\pi/2}^{2/2} + H_g(0)
\]

\[
\delta_{3/2}^{1/2} - G_{1u}(0) - G_{2}(1) - F_{1}(3) - F_{2}(3) - G_{2}(4)
\]

\[
\delta_{3/2}^{2/2} + H_g(0)
\]
Phase Shifts

Physical point
- Fukugita et al. 1995
- Lang and Verduci 2012
- Bulava et al. 2022
- Silvi et al. 2021
- Alexandrou et al. 2023

$m_\pi a_0^{1/2}$ vs. m_π (MeV)

m_Δ (MeV)

$g_{\Delta N\pi}$
How important was the Δ operator?
\(l = 3/2 \)

\[G_1(1) \]

\[E_{cm}/m_\pi \]

\[N_\pi \]

\[N_{\pi\pi} \]

\[w/o \ Delta \]

\[w/ \ Delta \]

\[|Z^{(n)}|^2 \]

Level number \(n \)
Lattice #2 Computational Details

• Dim \((x^3 \times t)\):
 \[32^3 \times 256\]

• \(a_s = 0.11\, fm\)

• \(a_t = 0.033\, fm\)

• \(m_\pi = 230\, MeV\)

• \(m_K = 490\, MeV\)

• 412 configurations

• periodic temporal boundary conditions

• \(N_f = 2 + 1\)
Tetraquark Resonances

Two coupled-channel scattering channels investigated:

\[K\pi, K\eta \rightarrow K\pi, K\eta \quad K\bar{K}, \pi\eta \rightarrow K\bar{K}, \pi\eta \]

- resonance: \(\kappa \)
- \(I = 1/2 \)
- operators:
 - \(K \)
 - \(K\pi \)
 - \(K\eta \ (\eta = u\bar{u} + d\bar{d}) \)
 - \(K\phi \ (\phi = s\bar{s}) \)
 - \(\bar{u}u\bar{d}d \) (diquark-antidiquark)
- momentums: \(d^2 = 0 \)

- resonance: \(a_0(980) \)
- \(I = 1 \)
- operators:
 - \(\pi \)
 - \(K\bar{K} \)
 - \(\pi\eta \ (\eta = u\bar{u} + d\bar{d}) \)
 - \(\pi\phi \ (\phi = s\bar{s}) \)
 - \(\bar{u}u\bar{d}d \) (diquark-antidiquark)
- momentums: \(d^2 = 0 \)
Meson-Meson Spectrums

κ channel
TQ = $\bar{s}u\bar{s}s$

a_0 channel
TQ = $\bar{u}u\bar{d}u$

$E_{cm}/m_{\bar{K}}$

$A_{1g}(0)$

$\bar{K}\pi$

$\bar{K}\eta$

$\bar{K}\eta'$

$2\bar{K}$

$\pi\eta$

$E_{cm}/m_{\bar{K}}$

$A_{1g}^{-}(0)$

PRELIMINARY
Amplitudes

$K\pi-K\eta$ Spectrum (κ channel)

- Without tetraquark \rightarrow no resonance (fit to 5 levels)
- With tetraquark \rightarrow resonance at $\sim 2.1m_K$ (fit to 5+TQ levels)

$K\bar{K}-\pi\eta$ Spectrum (a_0 channel)

- Without tetraquark \rightarrow no resonance (fit to 3 levels)
- With tetraquark \rightarrow virtual bound state (fit to 2+TQ levels)
Conclusions

• Extracted scattering information in the Δ channel → needed Δ operators to extract accurate spectrum
• Tetraquark operators are needed to study resonances in $K\pi - K\eta$ and $K\bar{K} - \pi\eta$ channels

Future Work

• More statistics
• Multiple-lattice spacing
• Cutoff effects
• Investigate more complicated operators
Thanks for listening!

IN MY PAST, I’VE MADE MISTAKES.

BUT IN MY FUTURE...

I WILL MAKE DIFFERENT MISTAKES.