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“Fact”:

Scalar φ4 theory

SE =
1

2

∫
d4x

[
∂µφ∂µφ+ m2

0φ
2 + λ0φ

4
]

is trivial in four dimensions:

lim
a→0

λIR = 0

[Wilson; Fröhlich; Lüscher; Weisz;...]

a=lattice spacing= 1
ΛUV
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a=lattice spacing= 1
ΛUV



“Fact”:
Scalar φ4 theory

SE =
1

2

∫
d4x

[
∂µφ∂µφ+ m2

0φ
2 + λ0φ

4
]

is trivial in four dimensions:

lim
a→0

λIR = 0
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“Loophole” in proofs:
assume λ0 > 0



A hint from large N Field Theory

O(N) model provides solvable interacting field theory for N � 1

Exact large N running coupling [2305.05678]

lim
ΛUV→∞

λ(µ) =
(2π)2

ln M2

µ2

;

λIR 6= 0. Theory is nontrivial!

Possible because exact large N bare coupling given by

λ0 ≡ λ (µ = ΛUV) =
(2π)

ln M2

Λ2
UV

< 0

Coupling at UV scale is negative
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Negative Coupling Field Theory History



Is There More to Quantum Field Theory Than It Seems?

λ0 < 0 λ0 > 0



Lessons from Quantum Mechanics

QM partition function, path integral

Z (λ) =

∫
Dφe−SE , SE =

1

2

∫ β

0
dτ
[
φ̇2 + 2λφ4

]
Can we make sense of negative coupling Z (λ = −g)?

Yes, via analytic continuation!

Deform integration contours into complex manifold, e.g.

φ(x) = s(x)
[
e

iπ
4 θ(−s(x)) + e

−iπ
4 θ(s(x))

]





Contour “Deformation” changes sign of quartic term:

−gφ4(x)→ +gs4(x)

Kinetic term becomes complex → sign problem!

Just quantum mechanics, can beat down sign problem by brute-force
numerical integration

→ We discretize action using finite-differencing and evaluate

Z (λ = −g)

directly on complex contour for various values of g > 0 [2303.01470]





Negative coupling QM has come up in a different context before

[Bender & Böttcher 1997] consider QM with Hamiltonian H = p2

2 − gx4

Called ’PT-symmetric’ Quantum Mechanics

Surprisingly, spectrum of H is real and positive definite:

E0 ' 0.9305460341g
1
3

E1 ' 3.7818962485g
1
3

E2 ' 7.4350672631g
1
3

En≥3 ' 2.18507(n + 0.5)
4
3 g

1
3

Can define PT -symmetric partition function

ZPT (g) =
∞∑
n=0

e−βEn

What happens if we compare this to our negative coupling Z?



Perfect match!



4d lattice φ4 theory with λ0 < 0



Same principle as in 1d

Write down ’usual’ Euclidean field theory

Z =

∫
Dφe−SE , SE =

1

2

∫
d4x

[
∂µφ∂µφ+ m2

0φ
2 + 2λ0φ

4
]

Discretize on hypercube

’Contour deform’ to complex manifold

φ(x) = s(x)
[
e

iπ
4 θ(−s(x)) + e

−iπ
4 θ(s(x))

]
, s(x) ∈ R

On complex manifold, discretize path integral is convergent for
λ0 < 0 but has a sign problem

Evaluate Z for λ0 < 0 by direct numerical integration on tiny
N3
σ × Nτ lattices



What to expect – large N as a guide

Large N coupling, identifying ΛUV = 1
a

λ0 ≡ λ
(
µ =

1

a

)
=

(2π)2

ln(M2a2)

Continuum limit a→ 0 corresponds to λ0 → 0−

On anisotropic lattice Nσ > Nτ ,

T =
1

Nτa
=

M

Nτ
e
− 2π2

λ0

Temperature increases as function of increasing λ0

Calculations at various λ0 correspond to different values of T



What to expect – large N as a guide

adapted from [2211.15683]



What to expect – large N as a guide

Two phases, separated by 2nd order transition

High temperature phase overshoots SB limit and approaches from
above



Direct simulation of N=1 φ4 with λ0 < 0

Sign problem

Brute force numerical integration of Z limited to tiny lattices

Chose anisotropic lattices with Nτ = 1

Results for m0a = 1 for simplicity

Normalize by low T (assume λ0 = −2 is low enough T)

Look at ∆ lnZ = ln Z(λ0)
Z(λ0=−2)



adapted from [2305.05678]



Summary

Triviality proofs for scalar φ4 theory have loopholes, notably λ0 < 0

Negative coupling QM can be defined on the lattice on complex
contours; path integral is convergent but has sign problem

Direct numerical simulation of λ0 < 0 QM match well-studied
PT -symmetric Quantum Mechanics

For 4d field theory, large N results provide exciting non-perturbative
guidance

Direct numerical simulation of 4d lattice scalar field theory is possible
on small lattices

How to push calculations to larger lattices?



Bonus Material
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Exact Running coupling in O(N) Model

[2305.05678]



Scattering in O(N) model
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Finite temperature O(N) model: susceptibilities
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