The conformal fixed point of the SU(3) with 10 fundamental flavors

Anna Hasenfratz University of Colorado Boulder

July 31,2023

Based on recent work by A.H.,E.Neil, Y.Shamir, B.Svetitsky, O.Witzel, arXiv:2306.07236

Gradient flow vs continuous RG transformations

GF can be *interpreted* as continuous real space RG with $\mu \propto 1/\sqrt{8t}$

- for *local* operators
- in the infinite volume limit

Ex-1:
$$g_{GF}^2 = \mathcal{N}t^2 < E(t) > \implies \beta(g^2)$$

Ex-2: $\mathcal{O} = \bar{\psi}(x)\Gamma\psi(x)$ $\implies \gamma_{\mathcal{O}}(g^2)$ A. Carosso, AH, E. Neil, PRL 121,201601 (2018)

Continuous β function

$$g_{GF}^2 = \mathcal{N}t^2 < E(t) > \implies \qquad \beta_{GF}(a;g_{GF}^2) = -t^2$$

- estimate flowed energy density $\langle E(t) \rangle$: W, C or S
- $\beta(g^2)$ defined in $am_f = 0$ chiral limit : simulations are at κ_{cr}

Analysis:

- (2) interpolate $\beta(g^2; t)$ vs $g^2(t)$, all t/a^2
- (3) continuum limit : $t/a^2 \rightarrow \infty$ while keeping g_{GF}^2 fixed

Same approach as $N_f = 0$

 $dg_{GF}^2(a;t)$

- Fodor et al, EPJWeb Conf. 175, 08027 (2018) - AH, O.Witzel *Phys.Rev.D* 101 (2020) 3, 034514

(1) infinite volume limit : extrapolate in $(a/L)^4 \rightarrow 0$ at fixed bare coupling and t/a^2

- AH, C.T.Peterson, J.VanSickle, O.Witzel, *Phys.Rev.D* 108 (2023) 1, 014502

SU(3) gauge, $N_f = 10$ flavors

This system is close to the conformal sill Prior simulations were limited by strong lattice artifacts \Rightarrow restricted to $g^2 \leq 10$

no prediction of IR dynamics

- AH,C.Rebbi,O.Witzel, *Phys.Rev.D* 101 (2020) 11, 114508 - O. Witzel, this conference - J.Kuti,Z.Fodor,K.Hollad,C-H.

Wong arXiv: 2203.15847

Continuous β function

- staggered fermions (LatHC)
- Mobius DW

give consistent results

SU(3) gauge, $N_f = 10$ flavors

Our work with Wilson fermions reaches $g^2 \gtrsim 25$ → reveals IRFP at $g_*^2 = 15.0(5)$

consistent with prior results

- A.H., E.Neil, Y.Shamir, B.Svetitsky, O.Witzel, arXiv:2306.07236

We utilize several improvements[#]

- PV improved action
- different flows
- bootstrap error analysis

[#]See applications in: - A.H., E.Neil, Y.Shamir, B.Svetitsky, O.Witzel, Phys.Rev.D 107 (2023) 11, 114504 - Y. Shamir, this conference

Improved action: heavy PV bosons

Many flavor systems suffer from *bulk phase transitions* in strong coupling - Fermions generate a *positive* effective gauge action (hopping expansion) $S_{eff}^{(f)} = \frac{N_s}{(2am_f)^4} \sum_{n} ReTrV_{\Box} + c \frac{N_s}{(2am_f)^6} \sum_{6link} ReTrV_6 - link\cdots$

Bare gauge coupling g_0^2 increases to compensate:

rough gauge configurations, large cutoff effects

AH, Y. Shamir, B. Svetitsky, PRD104, 074509 (2021)

Improved action: heavy PV bosons

Compensate with heavy Pauli-Villars bosons

- g_0^2 decreases, cutoff effects decrease
- keep $am_{PV} \sim \mathcal{O}(1)$ fixed: in the IR $(a \rightarrow 0)$ the PV bosons decouple

• e.g.:
$$N_f = 10$$
, $\beta = 6.3$, $\kappa_f = 0.12677$:

AH, Y. Shamir, B. Svetitsky, PRD104, 074509 (2021)

- same interaction as fermions but with bosonic statistics : $S_{eff}^{(PV)} = -S_{eff}^{(f)}$

- $am_{AWI} \lesssim 10^{-4}$, $am_{PS} \propto 1/L$
- $\kappa_{PV} = 0.1$ ($am_{PV} = 1$) : $am_{AWI} = 0.73$, $am_{PS} = 1.80$

Improved action: heavy PV bosons

- Add many PV bosons to reduce the lattice fluctuations:
 - extends accessible renormalized coupling range
 - only a local effective gauge action IR properties are unchanged

AH, Y. Shamir, B. Svetitsky, PRD104, 074509 (2021)

Different flows / RG transformation

Vary the action for gradient flow (improved RG): $S_{flow} = c_p S_p + c_r S_{rec}$, $c_p + 8c_r = 1$ **S** : $c_p = 5/3$ W: $c_p = 1$ C23: $c_p = 2/3$ C13: $c_p = 1/3$

All flows should give the same continuum limit g^2 range is increasing as c_p decreases

(1) Infinite volume extrapolation

Volume dependence at leading order $\propto (t^2/L^4)$ (Wilsonian RG in finite volume)

- we use $t/a^2 = [2.8, 3.8]$, L = 24, 28: $t^2/L^4 < 6 \times 10^{-5}$

- take $(a/L)^4 \rightarrow 0$ for g^2 , $\beta(g^2)$ for each bare coupling and flow time

(2) Interpolation

•

We need the value of $\beta(g^2)$ for every g^2 and t/a^2 : polynomial interpolation

Compare L=24, 28 and ∞

..... IRFP at $g^2 \approx 15$

11

(3) Continuum limit

Extrapolate linearly in $a^2/t \rightarrow 0$ $L = \infty$ continuum limit, S op

..... IRFP at $g^2 \approx 15$

Require consistency between different operators :

- W agrees with S within 1 1σ C and W agree with S within 1σ

Constrains g^2 range (details in extra slides)

Require consistency between different operators :

- W agrees with S within 1 1 σ C and W agree with S within 1 σ

- Constrains g² range

Require consistency between different operators :

- W agrees with S within 1 1 σ C and W agree with S within 1 σ

- Constrains g² range

15

Require consistency between different operators : - W agrees with S within 1 1σ (bootstrap)

- Or: C and W agree with S within 1σ (bootstrap).

perators : ap) bootstrap bootstrap

All flows are consistent IRFP at $g^2 \simeq 15$

Anomalous dimension $\mathcal{O} = \bar{\psi}(x) \Gamma \psi(x)$ or $G_{\mathcal{O}}(x_4, t) = \langle \mathcal{O}(\bar{p} = 0, x_4; t) \mathcal{O}(\bar{p} = 0, 0; t = 0) \rangle$ • remove $\eta_{\psi}(Z_{\psi})$ by dividing with the vector operator : $\mathscr{R}_{\mathcal{O}}(x_4, t) = \frac{G_{\mathcal{O}}(x_4, t)}{G_{\mathcal{V}}(x_4, t)} \implies \gamma_{\mathcal{O}}(a; t) = t \frac{d\log \mathscr{R}_{\mathcal{O}}(a; t)}{dt} \text{, no dependence on } x_4 \gg \sqrt{8t}$

• combine $\gamma_{\mathcal{O}}(t)$ with $g_{GF}^2(t)$ to obtain $\gamma_{\mathcal{O}}(g^2)$ • continuum limit : $a^2/t \rightarrow 0$ at fixed g^2

Anomalous dimension $\gamma_m^* \simeq 0.60$ (at $g_{IRFP}^2 = 15.0(5)$) (not even close to the conformal sill)

 γ_m is consistent with prior hyperscaling determination at $g^2 \simeq 10$, $\gamma_m = 0.46$

LSD coll., *Phys.Rev.D* 103 (2021) 1, 014504

Anomalous dimension $\gamma_m^* \simeq 0.60$ (at $g_{IRFP}^2 = 15.0(5)$) (not even close to the conformal sill)

 γ_m is consistent with prior hyperscaling determination at $g^2 \simeq 10$, $\gamma_m = 0.46$

LSD coll., *Phys.Rev.D* 103 (2021) 1, 014504

Summary:

- Heavy PV bosons remove cutoff effects \rightarrow stronger renormalized gauge couplings
- Use of different flows further extends the reach in g^2
- Different flows at same g^2 rely on different bare couplings \implies consistency check!
- Bootstrap analysis give reliable errors and consistency checks

Our results show that SU(3) with 10 flavors is IR conformal

•
$$g_*^2 = 15.0(5)$$

• $\gamma_m^* \simeq 0.6$

With new methods we cover strongly coupled regime that was not accessible before

EXTRA SLIDES

Simulation details

Plaquette action and Wilson fermions with:

- Clover term
- nHYP smeared links
- nHYP dislocation suppressing gauge term
- PV bosons : 3 per fermions, $\kappa_{PV} = 0.1$ ($am_{PV} \gtrsim 1.0$)
- •well behaved effective gauge action

21

Different flows / RG transformation

Vary the action for gradient flow (improved RG): $S_{flow} = c_p S_p + c_r S_{rec}$, $c_p + 8c_r = 1$ **S** : $c_p = 5/3$ All flows should give the same continuum limit W: $c_p = 1$ g^2 range is increasing as c_p decreases C23: $c_p = 2/3$ C13: $c_p = 1/3$

Consistency of flows

Continuum limit, $L \rightarrow \infty$

∠⊤

