01 Aug 2023
Schrödinger equation \(\to\) evolution of a system: \[\begin{equation} \label{eq:SchroedingerEquation} i \frac{\partial}{\partial t} | \psi \rangle = H | \psi \rangle \, , \end{equation}\] but the Hilbert space is often infinite dimensional…
Formalism suited for: tensor networks, quantum devices
Gauge invariance: \[\begin{equation} \label{eq:UgaugeTransformation} U_\mu(x) \to V(x) U_\mu(x) V^{-1}(x + \hat{\mu}) \, . \end{equation}\] In the \(A_0 = 0\) gauge we find: \[ H = \frac{g^{2}}{2} \sum_{x, i, a} {(L_i)}_{a}^{2}(x) - \frac{1}{4 g^{2}} \sum_{x, i>j} \, \mathrm{Tr}[{U}_{i j}(x) + {U}_{i j}^\dagger(x) ] \, , \]
\(L_a L_a = R_a R_a\)
\([L_a, U] = - \tau_a U\)
\([R_a, L_b] = U \tau_a\)
A basis for the Hilbert space are the Lie algebra irreps (electric basis):
\[\ket{j, m, \mu} \, \, , \, j \in \mathbb{N}/2 \, \, \, |m|,|\mu|<j\]
Clebsh-Gordan expansion
\[\begin{equation} \begin{split} U^{(\alpha,\beta)} \ket{J,m,\mu} =& \sum_{j \in \mathbb{N}/2} \sqrt{\frac{2J+1}{2j+1}} \braket{J,m;\frac{1}{2},\alpha | j,m+\alpha} \\ & \braket{J,\mu;{\frac{1}{2}},\beta|j,\mu+\beta} \, \ket{j,m+\alpha,\mu+\beta} \, . \end{split} \end{equation}\]
This is all fine in an infinite dimensional space, but…
In a finite Hilbert space we have to give up something 🙁:
\[\operatorname{tr}[A,B] = 0\]
Clebsh-Gordan truncation
Unitary links (our approach)
Points on C are a basis:
\[U \ket{\alpha} = e^{i \alpha} \ket{\alpha}\]
The momenta are simply (abelian group):
\(L_a = -i \frac{d}{d \omega}\)
\(R_a = +i \frac{d}{d \omega}\)
Eigenfunctions on \(S_3\) (Wigner D-functions):
\[ D(\theta, \phi, \psi) = e^{i m \phi} d^j_{m,\mu}(\theta) e^{i\mu\psi} \]
\[\begin{align*} {L}_\pm &= e^{\mp i \phi} \left[ \pm \frac{1}{\sin{\theta}} \frac{\partial}{\partial \psi} + \frac{\partial}{\partial \theta} \mp \cot{\theta} \frac{\partial}{\partial \phi} \right] \\ {L}_3 &= -i \frac{\partial}{\partial\phi} \end{align*}\]
\[\begin{eqnarray*} \left(\sum_a R_a^2\right) | j, m, \mu \rangle = \left(\sum_a L_a^2\right) | j, m, \mu \rangle = j(j+1) | j, m, \mu \rangle \\ L_3 | j, m, \mu \rangle = m | j, m, \mu \rangle \\ R_3 | j, m, \mu \rangle = -\mu | j, m, \mu \rangle \\ (L_1 \pm i L_2) | j, m, \mu \rangle = \sqrt{j(j+1) - m (m \pm 1)}| j, m \pm 1, \mu \rangle \\ (R_1 \mp i R_2) | j, m, \mu \rangle = -\sqrt{j(j+1) - \mu (\mu \pm 1)}| j, m, \mu \pm 1 \rangle \end{eqnarray*}\]
Now fix a truncation: \(j \leq q\). We have \(N_q\) states:
\[ N_q = \sum_{j \leq q} (2j+1)^2 = \frac{1}{6}(4q+3)(2q+2)(2q+1) \sim O(q^3) \]
Question: How many eigenstates of \(U\) can I reproduce in the discrete space?
\[\begin{align*} \label{eq:L3MatrixRepElectricBasis} L_3^{\text{el.}} &= \sum_{j=0}^{q} \sum_{|m| \leq j} | j, m \rangle m \langle j, m| \\ & \, \dot{=} \, \begin{bmatrix} & \cdots & \cdots & 0 \\ \vdots & \ddots & & \\ 0 & \cdots & \begin{bmatrix} \begin{bmatrix}1/2&0\\0&-1/2\end{bmatrix}_{\mu=1/2} & 0 \\ 0 & \begin{bmatrix}1/2&0\\0&-1/2\end{bmatrix}_{\mu=-1/2} \end{bmatrix}_{j=1/2} & 0 \\ 0 & \cdots & 0 & \begin{bmatrix}0\end{bmatrix}_{j=0} \\ \end{bmatrix} \, , \end{align*}\]
Question: How many of these survive after discretizing the \(S_3\)?
Spoiler alert ⚠: It depends on the discretization (see e.g. M. Garofalo - Canonical Momenta in Digitized SU(2) Lattice Gauge Theory)
\(S_3\) is a non-abelian manifold \(\to\) \(N_\alpha\) points cannot sample \(N_\alpha\) Fourier modes! (c.f. Shannon-Nyquist theorem)
\(N_\alpha > N_q\) 😤
\[ N_\alpha \geq \begin{cases} (q + 1/2) (4q+1)^2 & q \, \text{half integer}\\ (q + 1) (4q+1)^2 & q \, \text{integer} \end{cases} \]
Physical consequence:
\(V\) is at most rectangular \(\to\) enlarging the space of the first \(N_q\) \(su(2)\) irreps.
Presence of extra “garbage states” 🗑️
What is the form of \(V\)? \[\begin{equation*} f(\vec{\alpha}_k) = f(\theta, \phi, \psi) = \sum_{j=0}^{q} \sum_{m,\mu = -j}^{j} {V}^j_{m,\mu}(\vec{\alpha}_k) \hat{f}(j, m, \mu) \end{equation*}\]
\[\begin{equation} {V}^j_{m,\mu}(\vec{\alpha}_k) = (j + 1/2)^{1/2} \sqrt{\frac{w_s}{N_\phi N_\psi}} D^j_{m,\mu}(\vec{\alpha}_k) \end{equation}\]
\[\begin{equation*} L_a = V \hat{L}_a V^{\dagger} \,\, , \,\, R_a = V \hat{R}_a V^{\dagger} \end{equation*}\]
Properties:
Dense matrices for the momenta (local for \(q \to \infty\)) ❌
\(N_\alpha - N_q\) states degenerate with the electric vacuum ❌
\(\to\) lift with projector \(P_{j>q}\) \(\to\) decoupled ✅
\([G_a, H] \neq \vec{0}\) on \(N_\alpha-N_{q^{'}}\) states. ❌
\[[L_a, U] \, ✅ \implies U U^\dagger = U^\dagger U = 1 \, ❌\]
\[U U^\dagger = U^\dagger U = 1 \, ✅ \implies [L_a, U] \, ❌\]
Both unitary and non-unitay links formulations deserve to be considered
Unitary links limit the number of faithful represented electric eigenstates
Thank you for your attention!
Approaching \(a \to 0\)…
Truncated Clebsh-Gordan exapansion: \(U\) don’t resemble group elements anymore
Need to check \(\exists\) critical point
It is the same as the continuum theory?
Approaching \(a \to 0\)…
Unitary links: \(U\) take values in the manifold
Same as Lagrangian simulation (finite machine precision \(\to\) not exactly \(SU(2)\))
Need to check \(\exists\) 2nd order phase transition at finite \(N\) (Monte Carlo with same partitioning)
Check that it has the same step scaling function
\[U_{\mu \nu} \ket{\alpha_{1\to4}} = e^{i \alpha} \ket{\alpha_{1\to4}}\]
In the continuum limit \(a \to 0\) the plaquette approaches \(1\):
\[U_{\mu \nu} = e^{i a^2 F_{\mu \nu} + O(a^3)} = 1 + i a^2 F_{\mu \nu} + \ldots\]
\(\to\) restrict to the corresponding eigenstates gives an effective theory for fine lattices (if correlation length fits the lattice)