Simulating the lattice SU(2)Hamiltonian with discrete manifolds

Simone Romiti^(a)

T. Jakobs^(a), M. Garofalo^(a), T. Hartung^(b), K. Jansen^(c),

J. Ostmeyer^(d), D. Rolfes^(a), C. Urbach^(a)

^(a) University of Bonn (Germany) ^(b) Northeastern University (London)

^(c) DESY Zeuthen (Germany) ^(d) University of Liverpool

01 Aug 2023

1

Table of contents

- Introduction and theoretical background
- U(1) theory
- SU(2) theory
- Preliminary results: SU(2) in 1+1 dimensions
- Backup

Introduction and theoretical background

Hamiltonian simulations

Schrödinger equation \rightarrow evolution of a system:

$$irac{\partial}{\partial t}|\psi
angle = H|\psi
angle\,,$$
 (1.1)

but the Hilbert space is often infinite dimensional...

- Truncation of the Hilbert space to a vector space ${\mathcal V}$ of size N
- Operators as matrices on ${\cal V}$
- Limit recovered when $N
 ightarrow \infty$

Formalism suited for: tensor networks, quantum devices

Lattice formulation

Gauge invariance:

$$U_{\mu}(x) \to V(x)U_{\mu}(x)V^{-1}(x+\hat{\mu})$$
. (1.2)

In the $A_0 = 0$ gauge we find:

Representing the Hilbert space (I)

A basis for the Hilbert space are the Lie algebra irreps (**electric basis**):

 $|j,m,\mu
angle$, $j\in\mathbb{N}/2$ $|m|,|\mu|< j$

Clebsh-Gordan expansion

$$egin{aligned} U^{(lpha,eta)}|J,m,\mu
angle &= \sum_{j\in\mathbb{N}/2}\sqrt{rac{2J+1}{2j+1}}\,\langle J,m;rac{1}{2},lpha|j,m+lpha
angle \ \langle J,\mu;rac{1}{2},eta|j,\mu+eta
angle\,|j,m+lpha,\mu+eta
angle \,. \end{aligned}$$

This is all fine in an infinite dimensional space, but...

In a **finite** Hilbert space we have to give up something 🙁:

$$\operatorname{tr}[A,B]=0$$

Representing the Hilbert space (II)

Clebsh-Gordan truncation

- Commutation relations
- Gauss law invariance: $[H, G_a] = 0$

Unitary links (our approach)

- Commutation relations 🗙
- Gauss law breaking: $[H,G_a] \neq 0$ 🗙

- Non unitary links 🗙
- Need penalty term for $G_a |\psi
 angle = 0$ X

- Unitary links 🔽
- U as gates ightarrow initial state s.t. $G_a |\psi
 angle = 0$ 🚺

Unitary links in the magnetic basis

• $(x,\mu)
ightarrow$ group manifold $\mathcal{M}=\{p_1,\ldots,p_N\}.$ Diagonal links:

$$U = ext{diag}\left(\mathcal{U}(p_1), \dots, \mathcal{U}(p_1)
ight) \ , \ p_i \in \mathcal{M}$$

• Canonical momenta are Lie derivatives:

$$L_a f(U) = -i rac{d}{d\epsilon} f(e^{i\epsilon au_a}U) \;, \; R_a f(U) = -i rac{d}{d\epsilon} f(U e^{i\epsilon au_a})$$

- Note: this is just like $p=-irac{d}{dx}$ in NRQM! $|\psi(x)
angle$

U(1) theory

Continuum limit on the manifold

 $U_{\mu}(x)$ eigenstates

٠

The momenta are simply (abelian group):

•
$$L_a = -i rac{d}{d\omega}$$

• $R_a = +irac{d}{d\omega}$

SU(2) theory

Derivatives on S_3

Eigenfunctions on S_3 (Wigner D-functions):

$$D(heta,\phi,\psi)=e^{im\phi}d^j_{m,\mu}(heta)e^{i\mu\psi}$$

$$egin{aligned} L_{\pm} &= e^{\mp i \phi} \left[\pm rac{1}{\sin heta} rac{\partial}{\partial \psi} + rac{\partial}{\partial heta} \mp \cot heta rac{\partial}{\partial \phi}
ight] \ L_{3} &= -i rac{\partial}{\partial \phi} \end{aligned}$$

su(2) irreducible representations

$$egin{aligned} &\left(\sum_a R_a^2
ight)|j,m,\mu
angle = \left(\sum_a L_a^2
ight)|j,m,\mu
angle = j(j+1)|j,m,\mu
angle \ & L_3|j,m,\mu
angle = m|j,m,\mu
angle \ & L_3|j,m,\mu
angle = m|j,m,\mu
angle \ & (L_1\pm iL_2)|j,m,\mu
angle = \sqrt{j(j+1)-m(m\pm 1)}|j,m\pm 1,\mu
angle \ & (R_1\mp iR_2)|j,m,\mu
angle = -\sqrt{j(j+1)-\mu(\mu\pm 1)}|j,m,\mu\pm 1
angle \end{aligned}$$

Now fix a truncation: $j \leq q$. We have N_q states:

$$N_q = \sum_{j \leq q} (2j+1)^2 = rac{1}{6} (4q+3)(2q+2)(2q+1) \sim O(q^3)$$

Question: How many eigenstates of U can I reproduce in the discrete space?

Truncated su(2) irreps (example)

Question: How many of these survive after discretizing the S_3 ?

Spoiler alert △: It depends on the discretization (see e.g. M. Garofalo - Canonical Momenta in Digitized SU(2) Lattice Gauge Theory)

Frequencies on S_3

 S_3 is a non-abelian manifold $ightarrow N_lpha$ points cannot sample N_lpha Fourier modes! (c.f. Shannon-Nyquist theorem)

 $N_{lpha}>N_{q}$

$$N_lpha \geq egin{cases} (q+1/2)(4q+1)^2 & q ext{ half integer} \ (q+1)(4q+1)^2 & q ext{ integer} \ q ext{ integer} \end{cases}$$

Physical consequence:

• $U^{\dagger}U = UU^{\dagger} = 1 \implies \nexists$ square matrix V of change of basis between electric and magnetic basis.

Canonical momenta on S_3 partitionings (I)

- V is at most rectangular ightarrow enlarging the space of the first $N_q \, su(2)$ irreps.
- Presence of extra "garbage states"

What is the form of V?

$$f(ec{lpha}_k)=f(heta,\phi,\psi)=\sum_{j=0}^q\sum_{m,\mu=-j}^jV^j_{m,\mu}(ec{lpha}_k)\hat{f}(j,m,\mu)$$

Discrete Jacobi Transform

$$V^{j}_{m,\mu}(ec{lpha}_{k}) = (j+1/2)^{1/2} \sqrt{rac{w_{s}}{N_{\phi}N_{\psi}}} D^{j}_{m,\mu}(ec{lpha}_{k}) ~~(1.4)$$

- w_s Gaussian weights of Legendre polynomials
- ullet V of size $N_lpha imes N_q$
- $V^{\dagger}V = \mathbb{1}_{N_q imes N_q}$ (but not $VV^{\dagger} = \mathbb{1}_{N_lpha imes N_lpha}$)
- $\dim[\ker(V^\dagger)] = N_lpha N_q$

Properties of the discrete momenta

$$L_a = V \hat{L}_a V^\dagger \;,\; R_a = V \hat{R}_a V^\dagger$$

Properties:

- Exact Lie algebra: if_{abc} 🔽
- First N_q eigenstates $|j,m,\mu
 angle$ reproduced exactly
- Commutation relations fulfilled for the first

 $N_{q^{\,\prime}}=N_{q-1/2}$ irreps 🔽

Vacuum and Gauss Law

- Dense matrices for the momenta (local for $q
 ightarrow \infty$) 🗙
- $N_{\alpha} N_q$ states degenerate with the electric vacuum X \rightarrow lift with projector $P_{i>q} \rightarrow$ decoupled V
- $[G_a,H]
 eq ec 0$ on $N_lpha-N_{q'}$ states. X

Preliminary results: SU(2) in 1+1 dimensions

S. Romiti - Simulating the lattice SU(2) Hamiltonian with discrete manifolds

Conclusion

• We can't have both unitary links and exact commutation relations on all states:

$$egin{array}{lll} [L_a,U] &\longrightarrow UU^\dagger = U^\dagger U = 1 ightarrow \ UU^\dagger = U^\dagger U = 1 igcarrow &\longrightarrow \ [L_a,U] igcarrow \end{array}$$

- Both unitary and non-unitay links formulations deserve to be considered
- Unitary links limit the number of faithful represented electric eigenstates
- *Desirable feature*: being able to reduce the dimensionality of the space, e.g. constraining the values of the plaquette close to 1.

Thank you for your

attention!

Backup

Truncated Clebsh-Gordan expansion when a ightarrow 0 (I)

Approaching a
ightarrow 0...

Truncated Clebsh-Gordan exapansion: U don't resemble group elements anymore

- Need to check \exists critical point
- It is the same as the continuum theory?
 - what are the residual symmetries?
 - can we exclude nasty operators?

Discrete manifolds when a ightarrow 0 (II)

Approaching a
ightarrow 0...

Unitary links: U take values in the manifold

- Same as Lagrangian simulation (finite machine precision ightarrow not exactly SU(2))
- Need to check \exists 2nd order phase transition at finite N(Monte Carlo with same partitioning)
- Check that it has the same step scaling function

U(1) theory: a
ightarrow 0

$$|U_{\mu
u}|lpha_{1
ightarrow 4}
angle=e^{ilpha}|lpha_{1
ightarrow 4}
angle$$

In the continuum limit a
ightarrow 0the plaquette approaches 1:

$$U_{\mu
u} = e^{ia^2F_{\mu
u} + O(a^3)} = 1 + ia^2F_{\mu
u}$$

→ restrict to the
 corresponding eigenstates
 gives an effective theory for
 fine lattices (*if correlation length fits the lattice*)