Simulating the lattice $S U(2)$ Hamiltonian with discrete manifolds

Simone Romiti ${ }^{(a)}$
T. Jakobs ${ }^{(a)}$, M. Garofalo ${ }^{(a)}$, T. Hartung ${ }^{(b)}$, K. Jansen ${ }^{(c)}$,
J. Ostmeyer ${ }^{(d)}$, D. Rolfes ${ }^{(a)}$, C. Urbach ${ }^{(a)}$
${ }^{(a)}$ University of Bonn (Germany) ${ }^{(b)}$ Northeastern University (London)
${ }^{(c)}$ DESY Zeuthen (Germany) ${ }^{(d)}$ University of Liverpool

Table of contents

- Introduction and theoretical background
- U(1) theory
- $\operatorname{SU}(2)$ theory
- Preliminary results: $S U(2)$ in $1+1$ dimensions
- Backup

Introduction and theoretical background

Hamiltonian simulations

Schrödinger equation \rightarrow evolution of a system:

$$
\begin{equation*}
i \frac{\partial}{\partial t}|\psi\rangle=H|\psi\rangle \tag{1.1}
\end{equation*}
$$

but the Hilbert space is often infinite dimensional...

- Truncation of the Hilbert space to a vector space \mathcal{V} of size N
- Operators as matrices on \mathcal{V}
- Limit recovered when $N \rightarrow \infty$

Formalism suited for: tensor networks, quantum devices

Lattice formulation

Gauge invariance:

$$
\begin{equation*}
U_{\mu}(x) \rightarrow V(x) U_{\mu}(x) V^{-1}(x+\hat{\mu}) \tag{1.2}
\end{equation*}
$$

In the $A_{0}=0$ gauge we find:

$$
\begin{gathered}
H=\frac{g^{2}}{2} \sum_{x, i, a}\left(L_{i}\right)_{a}^{2}(x)-\frac{1}{4 g^{2}} \sum_{x, i>j} \operatorname{Tr}\left[U_{i j}(x)+U_{i j}^{\dagger}(x)\right], \\
L_{a} L_{a}=R_{a} R_{a} \quad\left[L_{a}, U\right]=-\tau_{a} U \quad\left[R_{a}, L_{b}\right]=U \tau_{a}
\end{gathered}
$$

Representing the Hilbert space (I)

A basis for the Hilbert space are the Lie algebra irreps (electric basis):

$$
|j, m, \mu\rangle, j \in \mathbb{N} / 2|m|,|\mu|<j
$$

Clebsh-Gordan expansion

$$
\begin{align*}
U^{(\alpha, \beta)}|J, m, \mu\rangle= & \sum_{j \in \mathbb{N} / 2} \sqrt{\frac{2 J+1}{2 j+1}}\left\langle J, m ; \frac{1}{2}, \alpha \mid j, m+\alpha\right\rangle \tag{1.3}\\
& \left\langle J, \mu ; \frac{1}{2}, \beta \mid j, \mu+\beta\right\rangle|j, m+\alpha, \mu+\beta\rangle
\end{align*}
$$

This is all fine in an infinite dimensional space, but...
In a finite Hilbert space we have to give up something \because :

$$
\operatorname{tr}[A, B]=0
$$

Representing the Hilbert space (II)

Clebsh-Gordan truncation

- Commutation relations
- Gauss law invariance:

$$
\left[H, G_{a}\right]=0
$$

- Non unitary links
- Need penalty term for $G_{a}|\psi\rangle=0$

Unitary links (our approach)

- Commutation relations
- Gauss law breaking: $\left[H, G_{a}\right] \neq 0 \boldsymbol{X}$
- Unitary links
- U as gates \rightarrow initial state s.t. $G_{a}|\psi\rangle=0 \nabla$

Unitary links in the magnetic basis

- $(x, \mu) \rightarrow$ group manifold $\mathcal{M}=\left\{p_{1}, \ldots, p_{N}\right\}$. Diagonal links:

$$
U=\operatorname{diag}\left(\mathcal{U}\left(p_{1}\right), \ldots, \mathcal{U}\left(p_{1}\right)\right), p_{i} \in \mathcal{M}
$$

- Canonical momenta are Lie derivatives:

$$
L_{a} f(U)=-i \frac{d}{d \epsilon} f\left(e^{i \epsilon \tau_{a}} U\right), R_{a} f(U)=-i \frac{d}{d \epsilon} f\left(U e^{i \epsilon \tau_{a}}\right)
$$

- Note: this is just like $p=-i \frac{d}{d x}$ in NRQM! $|\psi(x)\rangle$

$\mathrm{U}(1)$ theory

Continuum limit on the manifold

Points on C are a basis:

$$
U|\alpha\rangle=e^{i \alpha}|\alpha\rangle
$$

The momenta are simply
(abelian group):

- $L_{a}=-i \frac{d}{d \omega}$
- $R_{a}=+i \frac{d}{d \omega}$

SU(2) theory

Derivatives on S_{3}

Eigenfunctions on S_{3} (Wigner Dfunctions):

$$
D(\theta, \phi, \psi)=e^{i m \phi} d_{m, \mu}^{j}(\theta) e^{i \mu \psi}
$$

$$
\begin{aligned}
L_{ \pm} & =e^{\mp i \phi}\left[\pm \frac{1}{\sin \theta} \frac{\partial}{\partial \psi}+\frac{\partial}{\partial \theta} \mp \cot \theta \frac{\partial}{\partial \phi}\right] \\
L_{3} & =-i \frac{\partial}{\partial \phi}
\end{aligned}
$$

$s u(2)$ irreducible representations

$$
\begin{array}{r}
\left(\sum_{a} R_{a}^{2}\right)|j, m, \mu\rangle=\left(\sum_{a} L_{a}^{2}\right)|j, m, \mu\rangle=j(j+1)|j, m, \mu\rangle \\
L_{3}|j, m, \mu\rangle=m|j, m, \mu\rangle \\
R_{3}|j, m, \mu\rangle=-\mu|j, m, \mu\rangle \\
\left(L_{1} \pm i L_{2}\right)|j, m, \mu\rangle=\sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1, \mu\rangle \\
\left(R_{1} \mp i R_{2}\right)|j, m, \mu\rangle=-\sqrt{j(j+1)-\mu(\mu \pm 1)}|j, m, \mu \pm 1\rangle
\end{array}
$$

Now fix a truncation: $j \leq q$. We have N_{q} states:

$$
N_{q}=\sum_{j \leq q}(2 j+1)^{2}=\frac{1}{6}(4 q+3)(2 q+2)(2 q+1) \sim O\left(q^{3}\right)
$$

Question: How many eigenstates of U can I reproduce in the discrete space?

Truncated $s u(2)$ irreps (example)

$$
L_{3}^{\mathrm{el.} .}=\sum_{j=0}^{q} \sum_{|m| \leq j}|j, m\rangle m\langle j, m|
$$

Question: How many of these survive after discretizing the S_{3} ?
Spoiler alert \triangle : It depends on the discretization (see e.g. M. Garofalo - Canonical Momenta in Digitized SU(2) Lattice Gauge Theory)

Frequencies on S_{3}

S_{3} is a non-abelian manifold $\rightarrow N_{\alpha}$ points cannot sample N_{α} Fourier modes! (c.f. Shannon-Nyquist theorem)
$N_{\alpha}>N_{q}$

$$
N_{\alpha} \geq \begin{cases}(q+1 / 2)(4 q+1)^{2} & q \text { half integer } \\ (q+1)(4 q+1)^{2} & q \text { integer }\end{cases}
$$

Physical consequence:

- $U^{\dagger} U=U U^{\dagger}=1 \Longrightarrow \nexists$ square matrix V of change of basis between electric and magnetic basis.

Canonical momenta on S_{3} partitionings (I)

- V is at most rectangular \rightarrow enlarging the space of the first $N_{q} s u(2)$ irreps.
- Presence of extra "garbage states"

What is the form of V ?

$$
f\left(\vec{\alpha}_{k}\right)=f(\theta, \phi, \psi)=\sum_{j=0}^{q} \sum_{m, \mu=-j}^{j} V_{m, \mu}^{j}\left(\vec{\alpha}_{k}\right) \hat{f}(j, m, \mu)
$$

Discrete Jacobi Transform

$$
\begin{equation*}
V_{m, \mu}^{j}\left(\vec{\alpha}_{k}\right)=(j+1 / 2)^{1 / 2} \sqrt{\frac{w_{s}}{N_{\phi} N_{\psi}}} D_{m, \mu}^{j}\left(\vec{\alpha}_{k}\right) \tag{1.4}
\end{equation*}
$$

- w_{s} Gaussian weights of Legendre polynomials
- V of size $N_{\alpha} \times N_{q}$
- $V^{\dagger} V=1_{N_{q} \times N_{q}}$ (but not $V V^{\dagger}=1_{N_{\alpha} \times N_{\alpha}}$)
- $\operatorname{dim}\left[\operatorname{ker}\left(V^{\dagger}\right)\right]=N_{\alpha}-N_{q}$

Properties of the discrete momenta

$$
L_{a}=V \hat{L}_{a} V^{\dagger}, R_{a}=V \hat{R}_{a} V^{\dagger}
$$

Properties:

- Exact Lie algebra: $i f_{a b c}$
- First N_{q} eigenstates $|j, m, \mu\rangle$ reproduced exactly

$$
=N_{\alpha}
$$

\square

- Commutation relations fulfilled for the first

$$
N_{q^{\prime}}=N_{q-1 / 2} \text { irreps }
$$

Vacuum and Gauss Law

- Dense matrices for the momenta (local for $q \rightarrow \infty$)
- $N_{\alpha}-N_{q}$ states degenerate with the electric vacuum
\rightarrow lift with projector $P_{j>q} \rightarrow$ decoupled \downarrow
- $\left[G_{a}, H\right] \neq \overrightarrow{0}$ on $N_{\alpha}-N_{q^{\prime}}$ states.

Preliminary results: $S U(2)$ in $1+1$ dimensions

Conclusion

- We can't have both unitary links and exact commutation relations on all states:

$$
\begin{aligned}
& {\left[L_{a}, U\right] \boldsymbol{\nabla} \Longrightarrow U U^{\dagger}=U^{\dagger} U=1 \mathbb{X}} \\
& U U^{\dagger}=U^{\dagger} U=1 \boldsymbol{\nabla} \Longrightarrow\left[L_{a}, U\right] \mathbb{X}
\end{aligned}
$$

- Both unitary and non-unitay links formulations deserve to be considered
- Unitary links limit the number of faithful represented electric eigenstates
- Desirable feature: being able to reduce the dimensionality of the space, e.g. constraining the values of the plaquette close to 1 .

Thank you for your attention!

Backup

Truncated Clebsh-Gordan expansion when $a \rightarrow 0$ (I)

Approaching $a \rightarrow 0 \ldots$
Truncated Clebsh-Gordan exapansion: U don't resemble group elements anymore

- Need to check \exists critical point
- It is the same as the continuum theory?
- what are the residual symmetries?
- can we exclude nasty operators?

Discrete manifolds when $a \rightarrow 0$ (II)

Approaching $a \rightarrow 0 \ldots$
Unitary links: U take values in the manifold

- Same as Lagrangian simulation (finite machine precision \rightarrow not exactly $S U(2)$)
- Need to check \exists 2nd order phase transition at finite N
(Monte Carlo with same partitioning)
- Check that it has the same step scaling function

$U(1)$ theory: $a \rightarrow 0$

In the continuum limit $a \rightarrow 0$ the plaquette approaches 1 :
$U_{\mu \nu}=e^{i a^{2} F_{\mu \nu}+O\left(a^{3}\right)}=1+i a^{2} F$
\rightarrow restrict to the corresponding eigenstates gives an effective theory for fine lattices (if correlation
length fits the lattice)

