Renormalization of the Yukawa and Quartic Couplings in $\mathcal{N}=1$ Supersymmetric QCD

M. Costa¹, H. Herodotou^{1*}, H. Panagopoulos¹

¹Department of Physics, University of Cyprus, POB 20537, 1678, Nicosia, Cyprus

August 2023

*Speaker

Int	roc	lu	ct	io	r
00	00	0			

Contents

Introduction

- Supersymmetric QCD on the Lattice
- Symmetries of the SQCD Action

Fine-tuning of the Yukawa Couplings in SQCD

- Introduction
- Renormalization of the Yukawa Couplings

3 Fine-tuning of the Quartic Couplings in SQCD

• Renormalization of the Quartic Couplings

Supersymmetric QCD on the Lattice

Supersymmetric QCD on the Lattice (1)

- To study the strong interactions between the particles and their superpartners \rightarrow study the theory of SQCD \rightarrow serves as a prototype for SUSY models which necessitate a non-perturbative study, and for which SUSY is necessarily broken by the regularization ¹²
- $\bullet\,$ Extend Wilson's formulation of the QCD action $\rightarrow\,$ superpartner fields 3 $^{4}\,$
- Standard discretization \rightarrow quarks (ψ), squarks (A_{\pm}) and gluinos (λ) \rightarrow on the lattice points whereas gluons (u_{μ}) \rightarrow on the links between adjacent points:

$$U_{\mu}(x) = \exp[igaT^{\alpha}u^{\alpha}_{\mu}(x+a\hat{\mu}/2)]$$
(1)

- ¹ J. Giedt, Int. J. Mod. Phys. A24 (2009) 4045-4095
- ² D. Schaich, PoS (LATTICE2018) 005
- ³ D. Schaich, Eur. Phys. J. ST 232 (2023) no.3, 305-320
- ⁴ G. Bergner and S. Catterall, Int. J. Mod. Phys. A 31 (2016) no.22, 1643005

Supersymmetric QCD on the Lattice

Supersymmetric QCD on the Lattice (2)

 For Wilson-type quarks and gluinos, the Euclidean action S^L_{SQCD} on the lattice becomes ⁵:

$$S_{\rm SQCD}^{L} = a^{4} \sum_{x} \left[\frac{N_{c}}{g^{2}} \sum_{\mu,\nu} \left(1 - \frac{1}{N_{c}} \operatorname{Tr} U_{\mu\nu} \right) + \sum_{\mu} \operatorname{Tr} \left(\bar{\lambda} \gamma_{\mu} \mathcal{D}_{\mu} \lambda \right) - a \frac{r}{2} \operatorname{Tr} \left(\bar{\lambda} \mathcal{D}^{2} \lambda \right) \right. \\ \left. + \sum_{\mu} \left(\mathcal{D}_{\mu} A_{+}^{\dagger} \mathcal{D}_{\mu} A_{+} + \mathcal{D}_{\mu} A_{-} \mathcal{D}_{\mu} A_{-}^{\dagger} + \bar{\psi} \gamma_{\mu} \mathcal{D}_{\mu} \psi \right) - a \frac{r}{2} \bar{\psi} \mathcal{D}^{2} \psi \right. \\ \left. + i \sqrt{2} g \left(A_{+}^{\dagger} \bar{\lambda}^{\alpha} T^{\alpha} P_{+} \psi - \bar{\psi} P_{-} \lambda^{\alpha} T^{\alpha} A_{+} + A_{-} \bar{\lambda}^{\alpha} T^{\alpha} P_{-} \psi - \bar{\psi} P_{+} \lambda^{\alpha} T^{\alpha} A_{-}^{\dagger} \right) \right. \\ \left. + \frac{1}{2} g^{2} (A_{+}^{\dagger} T^{\alpha} A_{+} - A_{-} T^{\alpha} A_{-}^{\dagger})^{2} - m (\bar{\psi} \psi - m A_{+}^{\dagger} A_{+} - m A_{-} A_{-}^{\dagger}) \right],$$

$$(2)$$

•
$$P_{\pm} = (1 \pm \gamma_5)/2$$
 and $U_{\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x + a\hat{\mu})U_{\mu}^{\dagger}(x + a\hat{\nu})U_{\nu}^{\dagger}(x)$

- $m \rightarrow$ the mass of the matter fields (which may be flavor-dependent)
- $\bullet \ \mathcal{D} \rightarrow$ the standard covariant derivative in the fundamental/adjoint representation 5
- $a \rightarrow$ lattice spacing, $r \rightarrow$ Wilson parameter, $N_c \rightarrow$ number of colors
- $T^{\alpha} \rightarrow$ generators of SU(N_c), $g \rightarrow$ coupling constant
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (1)

Parity (\mathcal{P}) is a symmetry of the continuum theory that is preserved exactly in the lattice formulation:

$$\mathcal{P}: \begin{cases} U_0(x) \to U_0(x_P), & U_k(x) \to U_k^{\dagger}(x_P - a\hat{k}), & k = 1, 2, 3 \\ \psi_f(x) \to \gamma_0 \psi_f(x_P) & \\ \bar{\psi}_f(x) \to \bar{\psi}_f(x_P) \gamma_0 & \\ \lambda_f^{\alpha}(x) \to \gamma_0 \lambda_f^{\alpha}(x_P) & \\ \bar{\lambda}_f^{\alpha}(x) \to \bar{\lambda}_f^{\alpha}(x_P) \gamma_0 & \\ A_{\pm}(x) \to A_{\mp}^{\dagger}(x_P) & \\ A_{\pm}^{\dagger}(x) \to A_{\mp}(x_P) & \end{cases}$$

where $x_P = (-x, x_0)$

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (2)

• Charge conjugation (C) is also a symmetry of the continuum theory that is preserved exactly in the lattice formulation:

$$\mathcal{C}: \left\{ \begin{array}{l} U_{\mu}(x) \rightarrow U_{\mu}^{\star}(x), \quad \mu = 0, 1, 2, 3\\ \psi(x) \rightarrow -C\bar{\psi}(x)^{T} \\ \bar{\psi}(x) \rightarrow \psi(x)^{T}C^{\dagger} \\ \lambda(x) \rightarrow C\bar{\lambda}(x)^{T} \\ \bar{\lambda}(x) \rightarrow -\lambda(x)^{T}C^{\dagger} \\ A_{\pm}(x) \rightarrow A_{\mp}(x) \\ A_{\pm}^{\dagger}(x) \rightarrow A_{\mp}^{\dagger}(x) \end{array} \right\}$$

• The matrix C satisfies: $(C\gamma_{\mu})^{T} = C\gamma_{\mu}$, $C^{T} = -C$ and $C^{\dagger}C = 1$

Symmetries of the SQCD Action

Symmetries of the Supersymmetric QCD Action (3)

U(1)_R which rotates the quark and gluino fields in opposite direction:

$$\mathcal{R}: \left\{ egin{array}{l} \psi_f(x) o e^{i heta \gamma_5} \psi_f(x) \ ar{\psi}_f(x) o ar{\psi}_f(x) e^{i heta \gamma_5} \ \lambda(x) o e^{-i heta \gamma_5} \lambda(x) \ ar{\lambda}(x) o ar{\lambda}(x) e^{-i heta \gamma_5} \end{array}
ight\}$$

• *U*(1)_A which rotates the squark and the quark fields in the same direction as follows:

$$\chi : \left\{ \begin{array}{l} \psi_f(x) \to e^{i\theta\gamma_5}\psi_f(x) \\ \bar{\psi}_f(x) \to \bar{\psi}_f(x)e^{i\theta\gamma_5} \\ A_{\pm}(x) \to e^{i\theta}A_{\pm}(x) \\ A_{\pm}^{\dagger}(x) \to e^{-i\theta}A_{\pm}^{\dagger}(x) \end{array} \right\}$$

 Two terms with the Wilson parameter → break these symmetries → remedy the fermion doubling problem

Introduction

What do we calculate and why? (1)

- We calculate the renormalization factors of the Yukawa and quartic couplings of the $\mathcal{N}=1$ Supersymmetric QCD, discretized on a Euclidean lattice
- Introduce the appropriate counterterms to the regularised Lagrangian so as to fine-tune the bare parameters ⁶
- Calculate perturbatively the relevant three-point and four-point Green's functions using both dimensional and lattice regularizations
- Exploit some symmetries of the action → reduce the number of counterterms significantly → have a lattice discretization which preserves as many as possible of the continuum symmetries

⁶ P. Athron and D. J. Miller, Phys. Rev. D 76 (2007), 075010

What do we calculate and why? (2)

- Lagrangian parameters of the classical action do not include quantum fluctuations → not the physically measured parameters → bare parameters
- Restore Supersymmetry in the continuum limit ^{7 8 9}
- Important ingredients in extracting nonperturbative information for supersymmetric theories through lattice simulations
- This work is a sequel to earlier investigations on SCQD and completes the one-loop fine-tuning of the SQCD action on the lattice \rightarrow paving the way for numerical simulations of SQCD ⁵ 10

- ⁸ F. Farchioni et al., Eur. Phys. J. D 76 (2002), 719
- ⁹ S. Ali et al., Eur. Phys. J. C 78 (2018) 404
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507
- ¹⁰ M. Costa and H. Panagopoulos, Phys. Rev. D 99 (2019) no.7, 074512

⁷ G. Curci and G. Veneziano, Nucl. Phys. B292 (1987) 555

Introduction

Coupling Constants of the Action of SQCD

- Bare coupling constants appearing in the lattice action are not typically all identical
- Gauge coupling $g \to$ gluons couple with quarks, squarks, gluinos and other gluons with the same gauge coupling constant
- Yukawa interactions (between quarks, squarks and gluinos) and four-squark interactions contain a potentially different coupling constant → must be fine-tuned on the lattice
- A similar situation holds for quark and squark masses ⁵

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (1)

• For the purpose of studying Yukawa couplings, we examine the behavior under \mathcal{P} and \mathcal{C} of all gauge invariant and flavor singlet dimension-4 operators having one gluino, one quark and one squark field

Operators	\mathcal{C}	\mathcal{P}
$A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$	$-\bar{\psi}P_+\lambda A^\dagger$	$A\bar{\lambda}P\psi$
$\bar{\psi}P_{-}\lambda A_{+}$	$-A\bar{\lambda}P\psi$	$\bar{\psi}P_+\lambda A^\dagger$
$A\bar{\lambda}P\psi$	$-\bar{\psi}P_{-}\lambda A_{+}$	$A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$
$\bar{\psi}P_+\lambda A^\dagger$	$-A_{+}^{\dagger}\bar{\lambda}P_{+}\psi$	$\bar{\psi}P_{-}\lambda A_{+}$
$A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$	$-\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$	$A\bar{\lambda}P_+\psi$
$\bar{\psi}P_+\lambda A_+$	$-A\bar{\lambda}P_+\psi$	$\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$
$A\bar{\lambda}P_+\psi$	$-\bar{\psi}P_+\lambda A_+$	$A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$
$\bar{\psi}P_{-}\lambda A_{-}^{\dagger}$	$-A_{+}^{\dagger}\bar{\lambda}P_{-}\psi$	$\bar{\psi}P_+\lambda A_+$

Renormalization of the Yukawa Couplings

Computational Setup (2)

• Two linear combinations of Yukawa-type operators which are invariant under \mathcal{P} and \mathcal{C} :

$$A_{+}^{\dagger}\bar{\lambda}P_{+}\psi - \bar{\psi}P_{-}\lambda A_{+} + A_{-}\bar{\lambda}P_{-}\psi - \bar{\psi}P_{+}\lambda A_{-}^{\dagger} \qquad (3)$$

$$A_{+}^{\dagger}\bar{\lambda}P_{-}\psi - \bar{\psi}P_{+}\lambda A_{+} + A_{-}\bar{\lambda}P_{+}\psi - \bar{\psi}P_{-}\lambda A_{-}^{\dagger}$$
(4)

- All terms within each of the combinations in Eqs. (3) and (4) are multiplied by the same Yukawa coupling, g_{Y_1} and g_{Y_2} , respectively
- In the absence of anomalies, *χ* × *R* leaves invariant each of the four constituents of the Yukawa term (Eq. (3)), but it changes the constituents of the "mirror" Yukawa term (Eq. (4)) → guarantees the absence of a "mirror" Yukawa term

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (3)

- Compute, perturbatively, the relevant three-point Green's functions using both dimensional regularization (DR) in $D = 4 2\epsilon$ dimensions and lattice regularization (LR) with external gluino-quark-squark fields
- Three one-loop Feynman diagrams that enter the computation of the three-point amputated Green's functions for the Yukawa couplings (a wavy (solid) line → gluons (quarks) and a dotted (dashed) line → squarks (gluinos)):

• An arrow entering (exiting) a vertex \rightarrow a $\lambda, \psi, A_+, A_-^{\dagger}$ $(\bar{\lambda}, \bar{\psi}, A_+^{\dagger}, A_-)$ field Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Computational Setup (4)

- We impose renormalization conditions which result in the cancellation of divergences in the corresponding bare three-point amputated Green's functions with external gluino-quark-squark fields
- The renormalization factors are defined in such a way as to remove all divergences
- The application of the renormalization factors on the bare Green's functions leads to the renormalized Green's functions, which are independent of the regulator (*ϵ* in *DR*, *a* in *LR*) → renormalized Green's functions at a given scheme, but derived via different regularizations, should coincide

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factors of the Fields and the Coupling Constants

• The definition of the renormalization factors of the fields and the gauge coupling constant are the following:

$$\psi \equiv \psi^{B} = Z_{\psi}^{-1/2} \psi^{R}, \qquad (5)$$

$$u_{\mu} \equiv u_{\mu}^{B} = Z_{u}^{-1/2} u_{\mu}^{R}, \qquad (6)$$

$$\lambda \equiv \lambda^{B} = Z_{\lambda}^{-1/2} \, \lambda^{R}, \tag{7}$$

$$c \equiv c^B = Z_c^{-1/2} c^R, \tag{8}$$

$$g \equiv g^{B} = Z_{g}^{-1} \, \mu^{\epsilon} \, g^{R} \tag{9}$$

• The Yukawa coupling is renormalized as follows:

$$g_Y \equiv g_Y^B = Z_Y^{-1} Z_g^{-1} \mu^\epsilon g^R \tag{10}$$

• The components of the squark fields may mix at the quantum level, via a 2 × 2 mixing matrix (*Z_A*). We define the renormalization mixing matrix for the squark fields as follows:

$$\begin{pmatrix} A_{+}^{R} \\ A_{-}^{R\dagger} \end{pmatrix} = \begin{pmatrix} Z_{A}^{1/2} \end{pmatrix} \begin{pmatrix} A_{+}^{B} \\ A_{-}^{B\dagger} \end{pmatrix}$$
(11)

Renormalization of the Yukawa Couplings

Renormalization Condition in DR

- $\bullet~$ In the DR and $\overline{\rm MS}$ scheme this 2 \times 2 mixing matrix is diagonal^5
- Green's function in *DR* with external squark field $A_+ \rightarrow$ the renormalization condition up to g^2 will be given by:

$$\langle \lambda(q_1)A_+(q_3)\bar{\psi}(q_2)\rangle \Big|^{\overline{\mathrm{MS}}} = Z_{\psi}^{-1/2} Z_{\lambda}^{-1/2} (Z_A^{-1/2})_{++} \langle \lambda(q_1)A_+(q_3)\bar{\psi}(q_2)\rangle \Big|^{\mathrm{bare}}$$
(12)

- In the right-hand side all coupling constants must be expressed in terms of their renormalized values
- $\bullet~$ The left-hand side $\to~$ the $\overline{\rm MS}$ (free of pole parts) renormalized Green's function
- The other renormalization conditions which involve the external squark fields $A^{\dagger}_{+}, A_{-}, A^{\dagger}_{-}$ are similar

⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling in DR (1)

- Free to make appropriate choices of the external momenta → have checked that no superficial IR divergences will be generated given that the quark and squark fields are massive → calculation of the corresponding diagrams by setting to zero only one of the external momenta
- We present the one-loop Green's function for the Yukawa coupling for zero gluino momentum in *DR* with external squark field *A*₊:

$$\langle \lambda^{\alpha_{1}}(0)\bar{\psi}(q_{2})A_{+}(q_{3})\rangle^{DR,1100p} = -i(2\pi)^{4}\delta(q_{2}-q_{3})\frac{g_{Y}g^{2}}{16\pi^{2}}\frac{1}{4\sqrt{2}N_{c}}T^{\alpha_{1}}\times \left[-3(1+\gamma_{5})+((1+\alpha)(1+\gamma_{5})+8\gamma_{5}c_{\mathrm{hv}})N_{c}^{2} +(1+\gamma_{5})(-\alpha+(3+2\alpha)N_{c}^{2})\left(\frac{1}{\epsilon}+\log\left(\frac{\bar{\mu}^{2}}{q_{2}^{2}}\right)\right)\right]$$
(13)

- $c_{\rm hv} = 0, 1$ for the naïve and 't Hooft-Veltman (HV) prescription of γ_5 , respectively ¹¹ ¹² and $\alpha \rightarrow$ gauge parameter
- M. S. Chanowitz et al., Nucl. Phys. B 159 (1979), 225-243
 G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 44 (1972), 189-213

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling in DR (2)

 Recall the following fundamental results on the renormalization factor in DR which appear in the right-hand side of Eq. (12) ⁵:

$$\begin{split} Z_{\psi}^{DR,\overline{\mathrm{MS}}} &= 1 + \frac{g^2 C_F}{16 \pi^2} \frac{1}{\epsilon} \left(1 + \alpha\right), \qquad Z_A^{DR,\overline{\mathrm{MS}}} = \left(1 + \frac{g^2 C_F}{16 \pi^2} \frac{1}{\epsilon} \left(-1 + \alpha\right)\right) \mathbbm{1} \\ Z_{\lambda}^{DR,\overline{\mathrm{MS}}} &= 1 + \frac{g^2}{16 \pi^2} \frac{1}{\epsilon} \left(\alpha N_c + N_f\right), \quad Z_g^{DR,\overline{\mathrm{MS}}} = 1 + \frac{g^2}{16 \pi^2} \frac{1}{\epsilon} \left(\frac{3}{2} N_c - \frac{1}{2} N_f\right) \end{split}$$

- $C_F = (N_c^2 1)/(2 N_c) \rightarrow$ the quadratic Casimir operator in the fundamental representation and $N_f \rightarrow$ number of flavors
- By using Eq. (12) and for all Green's functions and all choices of the external momenta which we consider, we obtain the same value of Z_Y^{DR, MS}:

$$Z_{\gamma}^{DR,\overline{\rm MS}} = 1 + \mathcal{O}(g^4) \tag{14}$$

- $Z_{\gamma}^{DR,\overline{\mathrm{MS}}} \rightarrow$ at the quantum-level, the renormalization process involving the Yukawa interaction is not affected by one-loop corrections \rightarrow expect that the corresponding renormalization on the lattice will be finite
- ⁵ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Renormalization of the Yukawa Couplings

Renormalization Condition on the Lattice

- On the lattice the renormalization mixing matrix for the squark fields is non diagonal and the component $A_+(A_-)$ mixes with $A_-^{\dagger}(A_+^{\dagger})^{5}$
- The $\chi \times \mathcal{R}$ symmetry is broken \rightarrow in the calculation of the bare Green's functions on the lattice, we expect that mirror Yukawa term will arise at one-loop
- Introduction of the renormalization factor Z_{Y_1} and the mixing coefficient with mirror Yukawa term z_{Y_2} , where $Z = \mathbb{1} + \mathcal{O}(g^2)$ and $z = \mathcal{O}(g^2)$
- The renormalization condition is the following:

$$\begin{split} \left. \langle \lambda(q_1) A_+(q_3) \bar{\psi}(q_2) \rangle \right|^{\overline{\mathrm{MS}}} &= Z_{\psi}^{-1/2} Z_{\lambda}^{-1/2} \langle \lambda(q_1) \left((Z_A^{-1/2})_{++} A_+(q_3) + (Z_A^{-1/2})_{+-} A_-^{\dagger}(q_3) \right) \bar{\psi}(q_2) \rangle \right|^{\mathrm{bare}} \\ &+ (Z_A^{-1/2})_{+-} A_-^{\dagger}(q_3) \left(\bar{\psi}(q_2) \right) \Big|^{\mathrm{bare}} \end{split}$$
(15)

• The bare coupling g_{Y_2} arises in the right hand side of the renormalization condition

 $^{^5}$ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling on the Lattice (1)

- $\bullet\,$ Recall renormalization factors of fields and gauge coupling on the lattice 5
- Having checked that alternative choices of the external momenta give the same results for these differences, we present it only for zero gluino momentum and with external squark field A₊:

$$\begin{split} \langle \lambda^{\alpha_{1}}(0)A_{+}(q_{3})\bar{\psi}(q_{2})\rangle^{\overline{\mathrm{MS}},\mathrm{1loop}} &- \langle \lambda^{\alpha_{1}}(0)A_{+}(q_{3})\bar{\psi}(q_{2})\rangle^{LR,\mathrm{1loop}} \\ &= -i\left(2\pi\right)^{4}\delta(q_{2}-q_{3})\frac{g_{Y}g^{2}}{16\pi^{2}}\frac{1}{4\sqrt{2}N_{c}}T^{\alpha_{1}}\times \\ &\left[-3.7920\alpha(1+\gamma_{5})+(-3.6920+5.9510\gamma_{5}+7.5840\alpha(1+\gamma_{5})-8\gamma_{5}c_{\mathrm{hv}})N_{c}^{2}\right. \\ &\left.+(1+\gamma_{5})(\alpha-(3+2\alpha)N_{c}^{2})\log\left(a^{2}\bar{\mu}^{2}\right)\right] \end{split}$$
(16)

 $^{^5}$ M. Costa and H. Panagopoulos, Phys. Rev. D 96 (2017) no.3, 034507

Fine-tuning of the Yukawa Couplings in SQCD

Renormalization of the Yukawa Couplings

Renormalization Factor of the Yukawa Coupling on the Lattice (2)

• By combining the lattice expressions with the $\overline{\mathrm{MS}}$ -renormalized Green's functions calculated in the continuum and by recalling renormalization factors of fields and gauge coupling on the lattice we find for the renormalization factor and the mixing coefficient:

$$Z_{Y_1}^{LR,\overline{\rm MS}} = 1 + \frac{g^2}{16\pi^2} \left(\frac{1.45833}{N_c} + (4.40768 - 2c_{\rm hv})N_c + 0.520616N_f \right)$$
(17)

$$z_{Y_2}^{LR,\overline{\rm MS}} = \frac{g^2}{16\pi^2} \left(\frac{-0.040580}{N_c} + (2.45134 - 2c_{\rm hv})N_c \right)$$
(18)

- The above factors are gauge independent \to the $\overline{\rm MS}$ renormalization factors for gauge invariant objects are gauge-independent
- The multiplicative renormalization Z_{Y_1} and the mixing coefficient z_{Y_2} are **finite**

Renormalization of the Quartic Couplings

Computational Setup (1)

- Two squarks to lie in the fundamental representation and the other two in the antifundamental
- Ten cases for choosing the 4 external squarks:

$$\begin{aligned} & (A_{+}^{\dagger}A_{+})(A_{+}^{\dagger}A_{+}), \quad (A_{-}A_{-}^{\dagger})(A_{-}A_{-}^{\dagger}), \\ & (A_{+}^{\dagger}A_{+})(A_{-}A_{-}^{\dagger}), \quad (A_{+}^{\dagger}A_{-}^{\dagger})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{-}A_{+})(A_{-}A_{+}), \quad (A_{-}A_{+})(A_{+}^{\dagger}A_{-}^{\dagger}), \\ & (A_{+}^{\dagger}A_{+})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{+}^{\dagger}A_{+})(A_{-}A_{+}), \quad (A_{-}A_{+}^{\dagger})(A_{+}^{\dagger}A_{-}^{\dagger}), \quad (A_{-}A_{+})(A_{-}A_{+}) \end{aligned}$$

- $\bullet\,$ Pairs of squark fields in parenthesis $\to\,$ color-singlet combinations
- Take into account ${\cal C}$ and ${\cal P}$ to construct combinations which are invariant under these symmetries

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (2)

• There are five combinations ¹³:

Operators		\mathcal{P}
$\lambda_1[(A_+^{\dagger}A_+)^2+(AA^{\dagger})^2]$		+
$\lambda_2[(A_+^\dagger A^\dagger)^2+(AA_+)^2]$	+	+
$\lambda_3(A_+^\dagger A_+)(AA^\dagger)$	+	+
$\lambda_4(A_+^\dagger A^\dagger)(AA_+)$		+
$\lambda_{5}(A_{+}^{\dagger}A_{-}^{\dagger}+A_{-}A_{+})(A_{+}^{\dagger}A_{+}+A_{-}A_{-}^{\dagger})$		+

- Operators which are gauge invariant, flavor singlets and with dimensionality 4
- The tree-level values of λ_i which satisfy Supersymmetry are:

$$\lambda_1 = \frac{1}{2} g^2 \frac{N_c - 1}{2N_c}, \ \lambda_3 = \frac{1}{2} g^2 \frac{1}{N_c}, \ \lambda_4 = -\frac{1}{2} g^2, \ \lambda_2 = \lambda_5 = 0$$
(19)

• Compute these tree-level values by using the following relation for the generators:

$$T^{a}_{ij}T^{a}_{kl} = \frac{1}{2}(\delta_{il}\delta_{jk} - \frac{1}{N_c}\delta_{ij}\delta_{kl})$$
(20)

¹³ B. Wellegehausen and A. Wipf, PoS LATTICE2018 (2018), 210

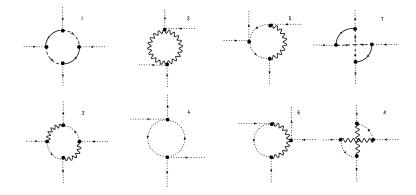
Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (3)

 These couplings receive quantum corrections, coming from the Feynman diagrams (a wavy (solid) line → gluons (quarks) and a dotted (dashed) line → squarks (gluinos)):



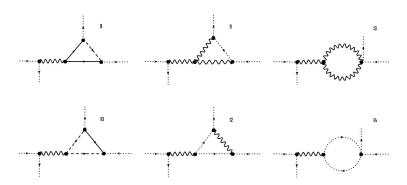
- Diagrams 7 and 8 are variants of diagrams 1 and 2, respectively
- Majorana nature of gluinos \rightarrow in diagram 7, in which $\lambda \lambda$ as well as $\overline{\lambda} \overline{\lambda}$ propagators appear

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (4)



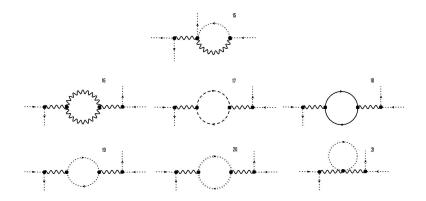
• Majorana nature of gluinos \rightarrow in diagram 10, in which $\lambda - \lambda$ as well as $\bar{\lambda} - \bar{\lambda}$ propagators appear

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (5)

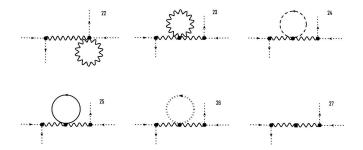


• Unlike gluon tadpoles which vanish in dimensional regularization, the massive squark tadpole gives a nonzero contribution (diagram 21)

Renormalization of the Quartic Couplings

Computational Setup (6)

Additional one-loop Feynman diagrams leading to the fine tuning of the quartic couplings on the lattice (a wavy (solid) line → gluons (quarks) and a dotted (dashed) line → squarks (gluinos)):



• The "double dashed" line is the ghost field and the solid box in diagram 27 comes from the measure part of the lattice action

Fine-tuning of the Yukawa Couplings in SQCD

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Computational Setup (7)

- $\bullet~\mbox{For each diagram} \rightarrow \mbox{nine Green's functions}$
- Compute the diagrams by setting 2 external squark momenta of fields in the fundamental representation (or antifundamental representation) to zero → this choice guarantees absence of IR singularities

Fine-tuning of the Quartic Couplings in SQCD

Renormalization of the Quartic Couplings

Tree-level Green's Functions with four External Squarks

• We present the tree-level Green's functions with four external squarks:

$$\langle A_{+}^{\dagger \alpha_{1}}(q_{1}) A_{+}^{\dagger \alpha_{2}}(q_{2}) A_{+}^{\alpha_{3}}(q_{3}) A_{+}^{\alpha_{4}}(q_{4}) \rangle^{\text{tree}} = \frac{1}{2N_{c}} g^{2} (-2+\beta) (-1+N_{c})$$
(21)

$$(\delta^{\alpha_{1}\alpha_{3}} \delta^{\alpha_{2}\alpha_{4}} + \delta^{\alpha_{1}\alpha_{4}} \delta^{\alpha_{2}\alpha_{3}})$$
(21)

$$\langle A_{-}^{\dagger \alpha_{1}}(q_{1}) A_{-}^{\dagger \alpha_{2}}(q_{2}) A_{-}^{\alpha_{3}}(q_{3}) A_{-}^{\alpha_{4}}(q_{4}) \rangle^{\text{tree}} = \frac{1}{2N_{c}} g^{2} (-2+\beta) (-1+N_{c})$$
($\delta^{\alpha_{3}\alpha_{1}} \delta^{\alpha_{4}\alpha_{2}} + \delta^{\alpha_{4}\alpha_{1}} \delta^{\alpha_{3}\alpha_{2}})$ (22)

$$\langle A_{+}^{\dagger \alpha_{1}}(q_{1}) A_{+}^{\alpha_{2}}(q_{2}) A_{-}^{\dagger \alpha_{3}}(q_{3}) A_{-}^{\alpha_{4}}(q_{4}) \rangle^{\text{tree}} = \frac{1}{2N_{c}} g^{2} \beta (N_{c} \delta^{\alpha_{1}\alpha_{3}} \delta^{\alpha_{4}\alpha_{2}} - \delta^{\alpha_{1}\alpha_{2}} \delta^{\alpha_{4}\alpha_{3}})$$
(23)

• The rest of the tree-level Green's functions with four external squarks are zero

Fine-tuning of the Quartic Couplings in SQCD 00000000●0

Renormalization of the Quartic Couplings

Renormalization Factor of the Quartic Couplings in DR

• The quartic couplings are renormalized as follows:

$$\lambda_1 = Z_{\lambda_1}^{-1} Z_g^{-2} \mu^{2\epsilon} \left[\frac{1}{2} \left(g^R \right)^2 \frac{N_c - 1}{2N_c} \right]$$
(24)

$$\lambda_{3} = Z_{\lambda_{3}}^{-1} Z_{g}^{-2} \mu^{2\epsilon} \left[\frac{1}{2} \left(g^{R} \right)^{2} \frac{1}{N_{c}} \right]$$
(25)

$$\lambda_4 = Z_{\lambda_4}^{-1} Z_g^{-2} \mu^{2\epsilon} \left[-\frac{1}{2} (g^R)^2 \right]$$
(26)

• The renormalization condition up to g^2 will be given by:

$$\left\langle A_{+}(q_{1})A_{+}^{\dagger}(q_{2})A_{+}(q_{3})A_{+}^{\dagger}(q_{4})\right\rangle \Big|^{\overline{\mathrm{MS}}} =$$

$$\left(Z_{A}^{-2} \right)_{++} \left\langle A_{+}(q_{1})A_{+}^{\dagger}(q_{2})A_{+}(q_{3})A_{+}^{\dagger}(q_{4})\right\rangle \Big|^{\mathrm{bare}}$$

$$(27)$$

- Use the renormalization condition, the renormalization factors of the squark fields and the gauge coupling and the bare Green's functions → determine the appropriate renormalization factor of each quartic coupling in order to cancel the divergences
- In our ongoing investigation → calculating perturbatively the relevant four-point Green's functions on the lattice so as to deduce the renormalization facotrs of the quartic couplings on the lattice

Fine-tuning of the Quartic Couplings in SQCD 0000000●

Renormalization of the Quartic Couplings

Summary-Conclusions

- The renormalization of the Yukawa coupling is **finite** and there is **a finite mixing** with the mirror Yukawa term on the lattice
- The renormalization of the quartic couplings is underway

Thank you for your attention!

European Union

European Regional Development Fund

Κυπριακή Δημοκρατία

