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Overview

Framework used: GRID! library, running on GPUs.

Targeted theories: Sp(2N) gauge theories with N, fundamental fermions, N__ 2-antisymmetric
fermions. Case study will be Sp(4) with N, =0, N_ = 4.
Plots will refer to this theory, unless stated.

Lattice used: V' / a* = 8% lattice, unless stated.
Update algorithm used: hybrid Monte-Carlo and rational hybrid Monte-Carlo.
Algorithm tests:
o  Behaviour of integrators and checks on molecular dynamics details.
o Tests of implementation of symmetries and fermionic operators.
Other tests:
o Parameter scans of Sp(4) theories.

o Scale setting and topology.

Based on the work presented in arXiv:2306.11649.

[1] P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, “Grid: A next generation data parallel C++ QCD library,”[arXiv:1512.03487 [hep-lat]]


https://arxiv.org/abs/2306.11649

Gauge theories with symplectic group
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e The Sp(2N) group is the subgroup of SU(2N) such that UQUT — () where ) = ( N
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GRID: basic tests of the algorithm
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e Dependence of (AH)on AT, which for

a second-order integrator has to scale as 107" -

(AH) < (AT)*

The best-fit curve is

log{AH) = K1 log(AT) + Ky
K= 3.6(4) XQ/Nd,O,f. = 0.6

e \We have also tested the expected
relation®! between the acceptance
probability and (AH)

P,.. = erfc (% <A H>)

[3] S. Gupta, A. Irback, F. Karsch and B. Petersson, “The Acceptance
Probability in the Hybrid Monte Carlo Method,” Phys. Lett. B 242, 437-443
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GRID: basic tests of the algorithm (2)
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Fig 3: Test of quartic
dependence,
B =6.8,am*, =-0.6.

Fig 4: Test of
acceptance probability,
B =6.8,am*, =-0.6.



e Force is splitted in its Approaching
contribution from the gauge chiral limit
and fermion dynamics®!

F(z, p) :F9<x7 #)+Ff<$7 1)

e For positive and very large
Wilson bare masses,
(approaching quenched
regime), the fermion
contribution disappears.

e Conversely, in the opposite
regime (chiral limit) the
fermion contribution become
progressively larger.

[4] L. Del Debbio, A. Patella and C. Pica, “Higher representations on the
lattice: Numerical simulations. SU(2) with adjoint fermions,” Phys. Rev. D 81

MD Force

GRID: field contribution to the MD force
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Fig 5: Field contribution to the MD force.
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The N = 2 quenched theory: Distribution of unfolded
density of spacing

Fundamental representation 2-index antisymmetric representation

Ensemble of gauge 144 i — SU(2N,)/SO(2N)

configurations without 5. == SU(Ny) x SU(Ny)/SU(Ny)
dynamical fermions A [T5UEN)/5p(N)
(quenched approximation)
can be used to verify that
the Dirac fermions are
correctly implemented.

-

P(s)

Because the spectrum
captures the properties

of the theory, the
distribution P(s) differs,
depending on the
symmetry-breaking pattern
predicted.

Fig 6: Distribution of the unfolded density of spacing between subsequent eigenvalues of the hermitian Dirac-Wilson operator, QQ,,, = 5Dy,
where B =8.0,am®,=-0.2,V = (4a)* .

We compare the results to
the exact predictions of
chiral Random Matrix

Theory (chRMT).1®! [5] J. J. M. Verbaarschot, “The Spectrum of the QCD Dirac operator and chiral random matrix theory: The Threefold 7
way,” Phys. Rev. Lett. 72, 2531-2533 (1994) doi:10.1103/PhysRevLett.72.2531 [arXiv:hep-th/9401059 [hep-th]].



structure. N. =4, N, =0.
as f
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Fig 7: Parameter scan of the Sp(4) theory with N__ =4, N, = 0 fermions.
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Fig 8: The colour scheme is the same as the figure on the left of the slide.



Scale setting and topology: Wilson flow

e In the continuum theory, Standard Clover-leaf Fig 9: Standard
introducing the fifth plaquette plaqustl (ief
H y panel) an
component, flow time, we Q Q Clover-leaf
Plaquette
solve 33 (right panel),
dBH (1 t) both us_ed for
——— = DyGyulz; t computing
dt vGuu(@, 1) Q Q Wilson flow.

with boundary conditions

Bu(z, 0) = Au(x)

e To define a scale, one

defines
t2
E(t) = 5 (T (G (HGu B)])
wt) = tdew
o dt
and the scales 0 1 2 3 4 0 1 2 3 4
t t
g(f) | by — 80 W(f) |t:w3 = Wo Fig 10: Wilson flow energy density E(t) and W(t), computed from the standard plaquette and the clover-leaf plaquette.

am®;=-0.8and V = (12q)* -



° We monitored the
evolution of the
topological charge,

w@t) = 55

QL(t) = ch qL(xv t)

to show that
topological freezing
was avoided.

e  Fit of the histograms
are compatible with
Gaussian distributions
centered at (Qr(t=w2)) =0

e  Madras-Sokal®
integrated
autocorrelation time ¢
is many orders of
magnitude smaller
than the number of
trajectories.

L5‘“’""Tr [Cov(2,8)Cpo (2, t)]

Qr(wp)

Scale setting and topology: topological charge
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Fig 11: Evolution with the ensemble trajectories of the topological charge, computed at flow time ¢t = wg . The lattice size is  V = (12a)*
and bare mass am® =-0.8.

[6] N.Madras and A.D.Sokal,“The Pivot algorithm:a highly efficient Monte Carlo method for self avoiding walk,”J.Statist. Phys 10

.50 ,109-186 (1988) doi:10.1007/BF01022990



Summary

e \We developed and tested new software, embedded into the GRID environment to take full
advantage of its flexibility.

e \We reported the (positive) results of our tests of the algorithms.

e We focused particularly on the Sp(4) theory coupled to N__= 4 (Dirac) fermions transforming in
the antisymmetric representation.

e There are no obvious problems in the software implementation.

11



Summary (2)

e This work, and the software we developed for it, set the stage needed to explore and quantify
future large-scale studies (e.g. extent of the conformal window).

e The tools we developed can be used also in the context of the recent literature discussing the
spectroscopy of Sp(2N) theories with various representations.

e This effort can be complemented and further extended by applying new techniques based on the
spectral densities.

12
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Sp(2N): Group-theoretical definitions

e The dimension of the group is dim Sp(2N) = (2N -+ 1)N
A B
e This implies the block structure U=
—B* A*

where the block matrices satisfy ABT = BAT, AA"+ BBt =1y

15



More group-theoretical definitions

Expanding the group element U in terms of the hermitian generators  [] — exp(z'wata)

We arrive at the following condition T = —QT" where 7T — Z WAte
a
X Y
which implies T =
Yy —X*

where hermiticity imposes the conditions X — XT Y — YT

16



H

MC and RHMC

Bosonic degrees of freedom ¢ and ¢', known as pseudofermions, are introduced replacing a
generic number n, of fermions.

(det DE

m

) = (det QR = / DDt e—a* T @' @(Q2) T (@)

m

A fictitious classical system is defined, described by gauge links and the conjugate momenta «(x, 1) = 7%(x, jt) t°
And the fictitious Hamiltonian is

1
H:5 Z 7*(z, p)w*(x, p) + Hy + Hy H,=5, H; =S
W5 lhs G
and the molecular dynamics evolution in fictitious time is dictated by % = (@, W)U, () | dﬂ((‘;;‘ W Fla,p) (1)

The update process can be described as follows:
o  Generate pseudofermions with distribution ¢—¢* . ¢"(@)(@Q%) 7" ?é(2)
o  Starting with Gaussian random conjugate momenta, integrating (1) numerically.
o  Accepting or rejecting the gauge configuration by a Metropolis test.

17



More details about the lattice theory

The massive Wilson-Dirac operators in the Lagrangian considered are:

m ng( ) = (4/&+TT?6)(2J(Q)
—% {Q -9 UP@Q (@ + 1) + (1 + 70D e — )@ (e - ) |

Iz
and

D@ (2) = (4/a+md )V ()
1 : ; ) .. S .
{(1 - q./p)U(ab)(:r)\IJJ(aﬁ + )+ (14 f\/ﬂ)U(“‘*>’ Ne— )W (2 — f) }

I

18



Sp(2N) antisymmetric representation

The link variables in the 2-antisymmetric representation are defined as

(as) _ (ab) Tyr(f) (ed)77(f) T
U ety = T (@O TUDLAYOT)

where e(®?) are an orthonormal basis in the N(2N - 1) - 1 dimensional space of 2N x 2N
antisymmetric and () -traceless matrices. The multi-indices (ab) runover 1 <a < b < 2N.
The entry of the basis is defined as follows:

for b # N —|— a we have GZ(-qb) = i ((5@'51)2’ — 5ai5bj)
j NG
_ —1__ fori<a,
whilefor b = N +gand 2<a <N plad) . (ab) 2a(a—1)
— 7 = N = TCiaN = g for i —
—2_ ., for i=a.
2a(a—1)

e Transformation of fundamental and 2AS fermions: Q — UQ, and ¥ — UTU"



GRID: basic tests of the algorithm (3)

e Average difference of x10~1

Hamiltonian evaluated by

evolving molecular dynamics 2007

forward and backward and 175 - E

ﬂlppmg the momentum at _ E E Fig A: Test of reversibility,

unitary MD-time. T 1.50 1 ’ ; ¢ 3 ¢ ¢ B =6.8, am™,=-06.
e Since the Hamiltonian is ~ 106 = ¢ ®

and the typical 6H ~ 10~ M LI

violation of reversibility is

consistent with relative 114 1'6 llg 2l0 212 2'4 216 ng

precision for double-precision -

floating-point numbers.
(where A7 =7/n.ep.)
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Generators of the algebra in GRID

010 0 0000
tgzL“’O 0 t?=10001
2200 0 -1 2fo000
00 -1 0 0100

0 i 00 0 0i0
tg=L —i0 00 t{:l 0 000
2210 0 0 i 21000
00 —i0 0 000

In GRID, the explicit representation for Sp(4) generators is 0001 0000
g L 0010 s_L[o0 0
2210100 20000
1000 0-i00

0 00 100 0
t;t:LOO’O t§=,°0°0
2210 =i 00 00 -10
—i 0 00 00 0 0
0010 000 0
t?zloooo t}0=10100
211000 21000 0
0000 000 —1




. The N = 2 |attice Yang-Mills theory: Polyakov loops

e Considering the pure gauge
Sp(4) theory, we verify that
centre symmetry, (22)4, is
broken at small volumes, but
restored at large volumes, by
looking at the Polyakov loop

1
P = —— g Tr
N N3 &~ (
X

t:Nt—l

IT vot, )

e Zero-temperature Sp(4) lattice
theory expected to preserve
the centre symmetry
(confinement): verified for
sufficiently large volumes.

)
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V = (4a)*
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Fig B: Study of finite-size effects on the lattice, for the Sp(4) Yang-Mills theory,

B=9.0 and V = (20)%, (4a)*, (12a)%, (20a)* -
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GRID: comparing HMC and RHMC

e As we will consider also odd
numbers of fermions, we
compute the average plaquette

e All fermions with the
HMC

e Two fermions with HMC
and two with RHMC

e All fermions with RHMC.

e No visible discrepancies are
detected.

0.002 A

0.001 A

0.000 +—%

—0.001 A

{P)umc — (P)ruMC

—0.002 A

2 2l

HaH

T
—1.4

T
—-1.2

T T
-1.0 -0.8 —-0.6

amg®

-0.2

0.0

0.003 -

0.002 A

0.001 A

0.000

o

oM

—0.001 4

—0.002 -

{P)umc — (P)2HMC4+2RHMC

—0.003 A

= =

~ot

—1.4

T
-1.2

T T
-1.0 -0.8 —0.6

amp®

T
-0.4

T
-0.2

0.0

Fig C: Compatibility between
plaquette averages obtained with
HMC and RHMC algorithms for the
theory N=2,N,=0,N__=4,

=68, -1.4<am* < 0.0
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Deconfinement with Polyakov loops

e The expectation value of a Polyakov loop!” determines the free energy Fq of a static quark as a
function of the inverse temperature 1/T according to

A Fy
(oG = exp (-3¢
and the correlation function of two Polyakov loops yields the static quark-antiquark free energy Fyg

(B()@! (7)) = exp <—(ﬁ ) T)

Therefore, static quarks will be confined if this correlation function vanishes when |7 —m| — 0 .

[71A. M. Polyakov, Phys. Lett. B 72 (1978), 477-480 doi:10.1016/0370-2693(78) 90737-2
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chRMT, Distribution of folded density of spacing

e According to ref. [5] , the folded density of spacing © ©
C C

LTS R L

Ps) = NBSB exp (—0532> , where Nz=2
€= 17 7Nconf

e The Dyson index B can take three different values:

For =1,  wewil have SU(2Ny) — Sp(2Ny)
For 3=2 , wewilhave SU(Ny)x SU(Ny)— SU(Ny)
For 3=4 , wewilhave SU(2Ny¢) — SO(2Ny)

25



Madras-Sokal windowing algorithm

e According to Madras-Sokal widowing algorithm, the integrated autocorrelation time of a finite sample A,

...,An is
{ n-l . 22M + 1)
i = -~ _%- ) A1) p(2) var(fin) & ———— Ty
" 2 2 2 ] n= _ _ 1 if |l‘ <M
)= C(t)= A, — v — A =
and 4(1) = C(1)/C(0) O=7—5 Z( A A=A A2) {0 it 1> M

where M is a suitable chose cut-off.
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Standard plaquette and Clover-leaf plaquette

e Standard plaquette:

e Clover-leaf plaquette:

Cuu(x) =

8

{ V@)U (@ + DUL (@ + H)UY @)+

+U, (2)Ul(z + D — p)US (z — p)U,(z — f) +
T U,E(l' - N)UJ(LL — - U (x— 0 — p)U,(x— D)+
+US (z — D) Uu(z — )U,(x — D+ QU (z) — hec. } .
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The N = 2 theories couples to fermions. Bulk phase
structure: varying N__.

1.0

0.8 1

0.6 A

(P)

0.4 A

0.2 1

0.0

Nw=0 ..

0

0.70 4
0.65 A
0.60 1
E‘A, 0.55 4

0.50 4

0.40 4

0.35 1,

Nos =2 ——62 ——66

——06.4 ——06.7

——06.5 6.8

W

—0.8 —0.6 —-0.4 —0.2 0.0

amf®

—-1.4 -1.2 -1.0

G104 Nos =1 6.6 ——6.9

0.65 ——6.7 ——7.0

——68 ——7.1
0.60 -

& 055 \.\\‘\\\\-
0.50
0.45 -
0.40

0.35 +— : : T r ; T :

-14 -12  -10 -08 —06 —04 —02 00
amg®
8
el Noe =3 58 ——65

Fig D: Parameter scan of the Sp(4)
theory with N_. =0,1,2,3,N,=0
fermions.
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The N = 2 theories couples to fermions. Bulk phase
structure: varying N__. (2)
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The N = 2 theories couples to fermions. Bulk phase
structure. N__ =4, N. =0 (2)

e \We computed the
plaquette susceptibility

|4 9 0.6 0.20
xe = 1 (P = (P)?) 3 7o (s0)
- 7 — 4

and compare the 0.4 1 EE e 3@ ¥ V= (1]
numerical results 5 % 636 4 [

obtained with a

ensembles having two 0.2 - B 0.05 4 . i guinm
different volumes V = (8a)* . "L | * 3
V = (16a)" 0.0 “..”°°?'...T. 0.00 : : : : ,

~-1.20 —-1.15 —-1.10 —1.05 —1.00 —1.02 —1.00 —0.98 —0.96 —0.94 —0.92 —0.90
e When B is small, first amg’

order phase transition. Fig F: Plaquette susceptibility of the Sp(4) theory with N__ = 4, N, = 0 fermions, for B = 6.2 (left panel) and B = 6.5 (right panel).
When it’s not, smooth

Crossover.
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The conformal window

The challenging question of
identifying the lower end of the
conformal window in these
theories coupled to matter fields
in various representations of
the group requires the
non-perturbative instruments of
lattice field theory.

This work, and the software we
developed for it, set the stage
needed to explore and quantify
the extent of the conformal
window in these theories.

Fig G: Estimates of the extent of the conformal window in Sp(4) theories coupled to Nf Dirac fermions transforming in the fundamental and Nas in the 2-index antisymmetric

representation.



