Meson-meson scattering at large N_{c}

Jorge Baeza-Ballesteros

In collaboration with P. Hernández and F. Romero-López

IFIC, University of Valencia-CSIC

Lattice23 - 31st July 2023

Has **predictive power** in the non-perturbative regime

Lattice allows to study subleading N_c effects

Long-term goal: Understand QCD at large N_c

- Meson masses and decay constants [Hernández et al. 2019]
- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2019]
- Low-energy $\pi\pi$ scattering [JBB et al. 2022]

Long-term goal: Understand QCD at large N_c

- Meson masses and decay constants [Hernández et al. 2019]
- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2019]
- Low-energy $\pi\pi$ scattering [JBB et al. 2022]

 $N_{\rm f} = 4 \; {
m QCD}$ $m_u = m_d = m_s = m_c$

Long-term goal: Understand QCD at large N_c

- Meson masses and decay constants [Hernández et al. 2019]
- $K
 ightarrow (\pi\pi)_{I=0,2}$ [Donini et al. 2019]
- Low-energy $\pi\pi$ scattering [JBB et al. 2022]

 $N_{\rm f} = 4 \; {
m QCD}$ $m_u = m_d = m_s = m_c$

This work: Energy-dependent meson-meson scattering

$\pi\pi$ at large N_{C}		FV energies	Scattering amplitudes	Summary
0000				
$\pi\pi$ scattering	at large $N_{\rm c}$			

$$\begin{split} N_{\rm f} = 4 &\rightarrow \textbf{7 scattering channels} \\ 15 &\otimes 15 = \textbf{84} \left(\textbf{SS} \right) \,\oplus\, 45 \,\oplus\, 45 \,\oplus\, \textbf{20} \left(\textbf{AA} \right) \,\oplus\, 15 \,\oplus\, 15 \,\oplus\, 1 \\ \\ \text{[JBB et al. 2022]} \quad \pi^+ \pi^+ \qquad D_s^+ \pi^+ - D^+ \mathcal{K}^+ \end{split}$$

$$\begin{split} N_{\rm f} &= 4 \rightarrow \textbf{7} \text{ scattering channels} \\ & 15 \otimes 15 = \textbf{84} \left(\textbf{SS} \right) \oplus 45 \oplus 45 \oplus \textbf{20} \left(\textbf{AA} \right) \oplus 15 \oplus 15 \oplus 1 \\ \\ & \text{[JBB et al. 2022]} \qquad \pi^+ \pi^+ \qquad D_s^+ \pi^+ - D^+ \mathcal{K}^+ \end{split}$$

$\pi\pi$ scattering	at large N_c			
0000	000	000	000	0
$\pi\pi$ at large N_{C}		FV energies	Scattering amplitudes	Summary

AA channel is **attractive** \rightarrow **Possible tetraquark**

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T^{0}_{cs0}(2900) \text{ in } D^{+}K^{-} \\ T^{++}_{c\bar{s}0}(2900) \text{ and } T^{0}_{c\bar{s}0}(2900) \text{ in } D^{\pm}_{s}\pi^{+} \end{array} \longrightarrow \begin{array}{c} AA \text{ channel} \\ \end{array}$$

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{c} T^0_{cs0}(2900) \text{ in } D^+ K^- \\ T^{++}_{c\bar{s}0}(2900) \text{ and } T^0_{c\bar{s}0}(2900) \text{ in } D^{\pm}_{s} \pi^+ \end{array} \longrightarrow \begin{array}{c} AA \text{ channel} \\ \end{array}$$

 $J = 1: T^0_{cs1}(2900) \text{ in } D^+K^- \longrightarrow 84 \oplus 45 \oplus 45 \oplus 20 \oplus 15 \oplus 15 \oplus 1$

AA channel is **attractive** \rightarrow **Possible tetraquark**

Recently found exotic states at LHCb [LHCb 2020, 2022]:

$$J = 0: \begin{array}{l} T_{cs0}^{0}(2900) \text{ in } D^{+}K^{-} \\ T_{c\overline{s}0}^{++}(2900) \text{ and } T_{c\overline{s}0}^{0}(2900) \text{ in } D_{s}^{\pm}\pi^{+} \end{array} \longrightarrow \begin{array}{l} AA \text{ channel} \\ J = 1: T_{cs1}^{0}(2900) \text{ in } D^{+}K^{-} \longrightarrow 84 \oplus 45 \oplus 45 \oplus 20 \oplus 15 \oplus 15 \oplus 11 \\ Below D_{s}^{+}\rho \text{ threshold} \rightarrow Described as meson-meson bound states \end{array}$$

$\pi\pi$ at large $N_{\rm C}$		FV energies	Scattering amplitudes	
0000	000	000	000	0
Meson-meson	scattering a	at large <i>N</i> c		

 $15 \otimes 15 = 84(SS) \oplus 45(SA) \oplus 45(AS) \oplus 20(AA) \oplus 15 \oplus 15 \oplus 1$

 $C_{5S} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$ $C_{5A} = D - C - (p_1 \leftrightarrow p_2)$ $C_{AS} = D + C - (p_1 \leftrightarrow p_2)$

con-meson scattering at large N_c

Goal: study meson-meson scattering at large N_c

 $15 \otimes 15 = 84(SS) \oplus 45(SA) \oplus 45(AS) \oplus 20(AA) \oplus 15 \oplus 15 \oplus 1$

 $C_{SS} = D - C + (p_1 \leftrightarrow p_2)$ $C_{AA} = D + C + (p_1 \leftrightarrow p_2)$ $C_{SA} = D - C - (p_1 \leftrightarrow p_2)$ $C_{AS} = D + C - (p_1 \leftrightarrow p_2)$

This talk: Preliminary results for AA with $N_c = 3$ and SS with $N_c = 3, 4$

$\pi\pi$ at large N_{c}	Lattice	FV energies	Scattering amplitudes	
0000	000	000	000	
Lattice comp	utations			

Lattice computations performed with HiRep [Del Debbio et al. 2010]

- Iwasaki gauge action with $N_{\rm f} = 4$ clover-improved Wilson fermions
- $N_{
 m c}=3,4,5,6$ ensembles with $a\sim 0.075$ fm and $M_{\pi}\sim 590$ MeV

$\pi\pi$ at large $N_{\rm C}$	Lattice	FV energies	Scattering amplitudes	Summary
	000			
Lattice cor	nputations			

Lattice computations performed with HiRep [Del Debbio et al. 2010]

- Iwasaki gauge action with $N_{\rm f} = 4$ clover-improved Wilson fermions
- $N_{
 m c}=3,4,5,6$ ensembles with $a\sim 0.075$ fm and $M_{\pi}\sim 590$ MeV

Operator basis: $\pi\pi + \rho\rho + \text{local tetraquark}$

- Two-particle operators $\rightarrow \mathbb{Z}_2 \times \mathbb{Z}_2$ noise
- Local tetraquark operators \rightarrow Point sources in a regular subgrid $\tilde{\Lambda}$

$\pi\pi$ at large $N_{\rm C}$	Lattice	FV energies	Scattering amplitudes	Summary		
	000					
Finite-volume energy spectra						

Project to cubic-group irreps and solve GEVP

 $C(t)v_n(t) = \lambda_n(t)C(t_0)v_n(t)$

 ππ at large N_c
 Lattice
 FV energies
 Scattering amplitudes
 Summary

 0000
 0●0
 000
 000
 0

 Finite-volume energy spectra

Project to cubic-group irreps and solve GEVP

```
C(t)v_n(t) = \lambda_n(t)C(t_0)v_n(t)
```

Eigenvectors provide intuition on the effect of each operator

AA channel, $N_c = 3$, $A_1^+(0)$, $M_\rho \sim 1.7 M_\pi$ Area \propto Relative overlap

 ππ at large Nc
 Lattice
 FV energies
 Scattering amplitudes
 Summary

 0000
 0●0
 000
 000
 0

 Finite-volume energy spectra

Project to cubic-group irreps and solve GEVP

```
C(t)v_n(t) = \lambda_n(t)C(t_0)v_n(t)
```

Eigenvectors provide intuition on the effect of each operator

AA channel, $N_c = 3$, $A_1^+(0)$, $M_\rho \sim 1.7 M_\pi$ Area \propto Relative overlap

 $\pi\pi$ at large N_c LatticeFV energiesScattering amplitudesSummary000000000000

Finite-volume energy spectra

Non-negligible thermal effects

$$\tilde{t} = t - \frac{T}{2} \checkmark \Delta E = E_{k_1} - E_{k_2}$$

$$C_{k_1,k_2}(t) = A \cosh(E_{k_1,k_2}\tilde{t}) + \tilde{A} \cosh(\Delta E\tilde{t})$$

$$C_{k_1}(t)C_{k_2}(t) = B \left[\cosh(E_{k_1,k_2}^{\text{free}}\tilde{t}) + \cosh(\Delta E\tilde{t})\right]$$
Time-dependent thermal effect

 $\pi \pi$ at large N_c LatticeFV energiesScattering amplitudesSummary00000000000000

Finite-volume energy spectra

Non-negligible thermal effects

$$\tilde{t} = t - \frac{T}{2} \checkmark \Delta E = E_{k_1} - E_{k_2}$$

$$C_{k_1,k_2}(t) = A \cosh(E_{k_1,k_2}\tilde{t}) + \tilde{A} \cosh(\Delta E\tilde{t})$$

$$C_{k_1}(t)C_{k_2}(t) = B \left[\cosh(E_{k_1,k_2}^{\text{free}}\tilde{t}) + \cosh(\Delta E\tilde{t})\right]$$
Time-dependent thermal effect

Fit ratio to 3 (
$$\boldsymbol{k}_1 \neq \boldsymbol{k}_2$$
) or 2
($\boldsymbol{k}_1 = \boldsymbol{k}_2$) parameters
 $R(t) = \frac{\partial_0 C_{\boldsymbol{k}_1, \boldsymbol{k}_2}(t)}{\partial_0 [C_{\boldsymbol{k}_1}(t) C_{\boldsymbol{k}_2}(t)]}$

Average plateaux using Akaike Information Criterion

[Jay and Neil 2020]

 ππ at large Nc
 Lattice
 FV energies
 Scattering amplitudes
 Summary

 000
 000
 000
 000
 0

 Finite-volume energies: AA channel

We study the effect of different operators for $N_c = 3$:

 $\pi\pi$ vs $\pi\pi$ + Local tetraquarks

 ππ at large Nc
 Lattice
 FV energies
 Scattering amplitudes
 Summary

 000
 000
 000
 000
 0

 Finite-volume energies: AA channel

We study the effects of different operators for $N_c = 3$:

 $\pi\pi$ + Local tetraquarks vs $\pi\pi$ + $\rho\rho$ + Local tetraquarks

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

$$\det[\tilde{\mathcal{K}}^{-1}(E) + B(\boldsymbol{P}, L; E)] = 0$$

$$\pi\pi - \rho\rho \text{ mixing} \checkmark J \text{ mixing}$$

Two-particle QC [Lüscher 1986, Rummukainen and Gotlieb 1995, He et al. 2005]:

 $\begin{array}{c|cccc} \pi \pi \text{ at large } N_{c} & & \text{EV energies} & & \text{Scattering amplitudes} & & \text{Summary} \\ \hline 0000 & & 000 & & 0 \\ \hline \text{Scattering phase shift: } AA \text{ channel} & & & \\ \hline \end{array}$

Compare amplitude for $\pi\pi$ vs $\pi\pi$ + local tetraquarks

The formation of the second s

Expected large N_c scaling: $\mathcal{M} \sim N_c^{-1}$

- ✓ We have determined the finite-volume energy spectra in the AA and SS channels including two-particle and local tetraquark operators
- ✓ In the AA channel, we have found a significant effect from tetraquark operators in the finite-volume energies

 \checkmark We have found the expected $N_{\rm c}$ scaling in the SS channel for $N_{\rm c}=3$ and 4

- ✓ We have determined the finite-volume energy spectra in the AA and SS channels including two-particle and local tetraquark operators
- ✓ In the AA channel, we have found a significant effect from tetraquark operators in the finite-volume energies

✓ We have found the expected N_c scaling in the SS channel for $N_c = 3$ and 4

Next steps: fit to $k \cot \delta_0$, higher partial waves and channel mixing, *SA* and *AS* channels, $N_c = 4, 5, 6$

- ✓ We have determined the finite-volume energy spectra in the AA and SS channels including two-particle and local tetraquark operators
- ✓ In the AA channel, we have found a significant effect from tetraquark operators in the finite-volume energies

 \checkmark We have found the expected $\mathit{N_c}$ scaling in the SS channel for $\mathit{N_c}=3$ and 4

Next steps: fit to $k \cot \delta_0$, higher partial waves and channel mixing, *SA* and *AS* channels, $N_c = 4, 5, 6$

Thank you for your attention!

84 (*SS*) \oplus **45** (*SA*) \oplus **45** (*AS*) \oplus **20** (*AA*) \oplus 15 \oplus 15 \oplus 1

$$\begin{aligned} O_{SS}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) + \pi^+(p_2) D_s^+(p_1) + K^+(p_1) D^+(p_2) + K^+(p_2) D^+(p_1) \right] \\ O_{SA}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) - \pi^+(p_2) D_s^+(p_1) - K^+(p_1) D^+(p_2) + K^+(p_2) D^+(p_1) \right] \\ O_{AS}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) - \pi^+(p_2) D_s^+(p_1) + K^+(p_1) D^+(p_2) - K^+(p_2) D^+(p_1) \right] \\ O_{AA}(p_1, p_2) &= \frac{1}{2} \left[\pi^+(p_1) D_s^+(p_2) + \pi^+(p_2) D_s^+(p_1) - K^+(p_1) D^+(p_2) - K^+(p_2) D^+(p_1) \right] \end{aligned}$$