

Contribution ID: 23 Type: Parallel Talk

Leading Power Accuracy in Lattice Calculations of Parton Distributions

Tuesday, 1 August 2023 16:20 (20 minutes)

In lattice-QCD calculations of parton distribution functions (PDFs) via large-momentum effective theory, the leading power (twist-three) correction appears as $calO(\Lambda_{\rm QCD}/P^z)$ due to the linear-divergent self-energy of Wilson line in quasi-PDF operators. For lattice data with hadron momentum P^z of a few GeV, this correction is dominant in matching, as large as 30\% or more. We show how to eliminate this uncertainty through choosing the mass renormalization parameter consistently with the resummation scheme of the infrared-renormalon series in perturbative matching coefficients. An example on the lattice pion PDF data at $P^z=1.9$ GeV shows an improvement of matching accuracy by a factor of more than $3\sim 5$ in the expansion region $x=0.2\sim 0.5$.

Topical area

Structure of Hadrons and Nuclei

Primary authors: ZHANG, Rui (University of Maryland, College Park); HOLLIGAN, Jack (Michigan State University); JI, Xiangdong (U. Maryland/Shanghai Jiao Tong University); SU, Yushan (University of Maryland, College Park)

Presenter: SU, Yushan (University of Maryland, College Park) **Session Classification:** Structure of Hadrons and Nuclei