Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

August 2, 2023
Introduction

- B-meson mixing and lifetimes are measured experimentally to high precision
- Key observables for probing New Physics ➤ **high precision in theory needed!**

![Graph showing key observables for probing New Physics](image)

Using GF to Renormalise

Matrix Elements for Mixing and Lifetimes

Matthew Black
B-meson mixing and lifetimes are measured experimentally to high precision

Key observables for probing New Physics ➔ high precision in theory needed!

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black

Introduction

- B-meson mixing and lifetimes are measured experimentally to high precision
- Key observables for probing New Physics ⇒ **high precision in theory needed!**
- For lifetimes and decay rates, we use the **Heavy Quark Expansion**

$$
\Gamma_{B_q} = \Gamma_3 \langle O_{D=3} \rangle + \Gamma_5 \frac{\langle O_{D=5} \rangle}{m_b^2} + \Gamma_6 \frac{\langle O_{D=6} \rangle}{m_b^3} + \ldots + 16\pi^2 \left[\tilde{\Gamma}_6 \frac{\langle \tilde{O}_{D=6} \rangle}{m_b^3} + \tilde{\Gamma}_7 \frac{\langle \tilde{O}_{D=7} \rangle}{m_b^4} + \ldots \right]
$$

- Factorise observables into ⇒ perturbative QCD contributions
 ⇒ **Non-Perturbative Matrix Elements**

Using GF to Renormalise

Matrix Elements for Mixing and Lifetimes

Matthew Black
Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations

$\Delta B = 2$ well-studied by several groups ➔ precision increasing [Tsang, Wed 09:20]
 ➔ preliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]

$\Delta B = 0$ ➔ exploratory studies from \sim20 years ago + new developments for lifetime ratios [Lin, Detmold, Meinel '22]
 ➔ contributions from disconnected diagrams
 ➔ mixing with lower dimension operators in renormalisation [Lin, Wed 09:00]
Four-quark $\Delta B = 0$ and $\Delta B = 2$ matrix elements can be determined from lattice QCD simulations.

$\Delta B = 2$ are well-studied by several groups, with precision increasing [Tsang, Wed 09:20].

Preliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19].

$\Delta B = 0$ are exploratory studies from ~20 years ago plus new developments for lifetime ratios [Lin, Detmold, Meinel '22].

Contributions from disconnected diagrams.

Mixing with lower dimension operators in renormalisation [Lin, Wed 09:00].

1. Establish gradient flow renormalisation procedure with $\Delta B = 2$ matrix elements.

2. Pioneer **connected** $\Delta B = 0$ matrix element calculation.

3. Tackle disconnected contributions.
Formulated by [Lüscher '10], [Lüscher '13] ➔ scale setting, RG β-function, renormalisation...

Introduce auxiliary dimension, flow time τ as a way to regularise the UV

Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$
\partial_t B_\mu(\tau, x) = D_\nu(\tau) G_{\nu\mu}(\tau, x), \quad B_\mu(0, x) = A_\mu(x),
\partial_t \chi(\tau, x) = D^2(\tau) \chi(\tau, x), \quad \chi(0, x) = q(x).
$$

Re-express effective Hamiltonian in terms of 'flowed' operators:

$$
\mathcal{H}_{\text{eff}} = \sum_n C_n O_n = \sum_n \tilde{C}_n(\tau) \tilde{O}_n(\tau).
$$

Relate to regular operators in 'short-flow-time expansion':

$$
\tilde{O}_n(\tau) = \sum_m \zeta_{nm}(\tau) O_m + O(\tau)
$$

'flowed' MEs calculated on lattice replacing $A_\mu, q \rightarrow B_\mu, \chi$
For a set of lattice ensembles with varying bare parameters

Calculate 2-point and 3-point correlation functions

Extract \textit{bare} Matrix Elements

Lattice \Rightarrow \overline{\text{MS}}

Continuum limit

Final Result
For a set of lattice ensembles with varying bare parameters

Evolve gluon and propagator fields in flow time τ

Calculate 2-point and 3-point correlation functions for each discrete τ

Extract GF Matrix Elements for each τ

Continuum limit for each τ

ζ_{nm}^{-1} matrix calculation

Final Result at $\tau = 0$ in $\overline{\text{MS}}$
We will consider RBC/UKQCD's 2+1 flavour Shamir DWF + Iwasaki gauge action ensembles

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>(a^{-1}/\text{GeV})</th>
<th>(am_l^{\text{sea}})</th>
<th>(am_s^{\text{sea}})</th>
<th>(M_\pi/\text{MeV})</th>
<th>srcs × N_{conf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>24</td>
<td>64</td>
<td>1.7848</td>
<td>0.005</td>
<td>0.040</td>
<td>340</td>
<td>32 × 101</td>
</tr>
<tr>
<td>C2</td>
<td>24</td>
<td>64</td>
<td>1.7848</td>
<td>0.010</td>
<td>0.040</td>
<td>433</td>
<td>32 × 101</td>
</tr>
<tr>
<td>M1</td>
<td>32</td>
<td>64</td>
<td>2.3833</td>
<td>0.004</td>
<td>0.030</td>
<td>302</td>
<td>32 × 79</td>
</tr>
<tr>
<td>M2</td>
<td>32</td>
<td>64</td>
<td>2.3833</td>
<td>0.006</td>
<td>0.030</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>32</td>
<td>64</td>
<td>2.3833</td>
<td>0.008</td>
<td>0.030</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>F1S</td>
<td>48</td>
<td>96</td>
<td>2.785</td>
<td>0.002144</td>
<td>0.02144</td>
<td>267</td>
<td></td>
</tr>
</tbody>
</table>

Exploratory simulations on C1, C2, M1 so far

To remove additional extrapolations in valence sector, we simulate at physical charm and strange

"neutral \(D_s\)" meson mixing
Lattice Simulation

- Fully-relativistic DWF for all valence quarks
- Strange quarks tuned to physical value (Shamir DWF)
- Heavy c quarks tuned for physical D_s mass (Möbius DWF)
 - $am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- Z_2 wall sources for all quark propagators [Boyle et al. '08]
 - Sources for strange propagators are also Gaussian smeared [Allton et al. '93]
- Calculate non-eye weak 3-point functions
- Fully-relativistic DWF for all valence quarks
- Strange quarks tuned to physical value (Shamir DWF)
- Heavy c quarks tuned for physical D_s mass (Möbius DWF)
 - $am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- Z2 wall sources for all quark propagators [Boyle et al. '08]
 - Sources for strange propagators are also Gaussian smeared [Allton et al. '93]
- Calculate non-eye weak 3-point functions
Fully-relativistic DWF for all valence quarks

Strange quarks tuned to physical value (Shamir DWF)

Heavy c quarks tuned for physical D_s mass (Möbius DWF)

- $am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]

Z2 wall sources for all quark propagators [Boyle et al. '08]

- Sources for strange propagators are also Gaussian smeared [Allton et al. '93]

Calculate non-eye weak 3-point functions

Valence simulations carried out using Hadrons [Portelli et al. '22]

Implemented gradient flow in Hadrons with 4D Laplacian for fermion evolution

Gauge and fermion fields evolved with $\epsilon = 0.01$

Measurements taken every 10 steps for $\tau/a^2 < 5$
Look at Bag parameters and their behaviour with the flow time τ

\[
R_1(\tau) = \frac{C^{3\text{pt}}_{O_1}(t, \Delta t, \tau)}{C^{2\text{pt}}_{AF}(t, \tau) C^{2\text{pt}}_{PA} (\Delta T - t, \tau)} \rightarrow B_1(\tau),
\]

\[
R_i(\tau) = \frac{C^{3\text{pt}}_{O_i}(t, \Delta t, \tau)}{C^{2\text{pt}}_{PP}(t, \tau) C^{2\text{pt}}_{PP} (\Delta T - t, \tau)} \rightarrow B_i(\tau), \quad i = 2 \rightarrow 5
\]

We seek a suitable window in flow time where the τ-dependences of flowed matrix elements and perturbative coefficients cancel.
Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black
Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black
Using GF to Renormalise
Matrix Elements for Mixing and Lifetimes

Matthew Black
Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black

Continuum Limit

\[\tau = 0.26 \text{ GeV}^{-2} \]

\[a^2 [\text{fm}^2] \]

-\[a^{-1} = 1.7848 \text{ GeV} \]
-\[a^{-1} = 2.3833 \text{ GeV} \]
-\[a = 0 \]

-\[\text{continuum limit very flat at positive flow time} \]
Combine with perturbative matching $\rightarrow \overline{\text{MS}}$

- Relate to regular operators in 'short-flow-time expansion':

$$\tilde{O}_n(\tau) = \sum_m \zeta_{nm}(\tau)O_m + O(\tau)$$

'flowed' MEs calculated on lattice

matching matrix calculated perturbatively

Using GF to Renormalise
Matrix Elements for Mixing and Lifetimes
Combine with perturbative matching $\rightarrow \overline{\text{MS}}$

- Relate to regular operators in 'short-flow-time expansion':

\[
\tilde{O}_n(\tau) = \sum_m \zeta_{nm}(\tau) O_m + O(\tau)
\]

'flowed' MEs calculated on lattice

\[
\sum_n \zeta_{nm}^{-1}(\mu, \tau) \langle \tilde{O}_n(\tau) \rangle = \langle O_m(\mu) \rangle
\]

mathcing matrix calculated perturbatively

Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

Matthew Black
Combine with perturbative matching \(\rightarrow \overline{\text{MS}} \)

- Relate to regular operators in 'short-flow-time expansion':

\[
\tilde{O}_n(\tau) = \sum_m \zeta_{nm}(\tau) O_m + O(\tau)
\]

'flowed' MEs calculated on lattice

\[
\sum_n \zeta_{nm}^{-1}(\mu, \tau) \langle \tilde{O}_n \rangle(\tau) = \langle O_m \rangle(\mu)
\]

- Calculated at two-loop for \(B_1 \) based on [Harlander, Lange '22]:

\[
\zeta_{B_1}^{-1}(\mu, \tau) = 1 + \frac{a_s}{4} \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + \frac{a_s^2}{43200} \left[-2376 - 79650L_{\mu\tau} - 24300L_{\mu\tau}^2 + 8250n_f + 6000n_fL_{\mu\tau} \\
+ 1800n_fL_{\mu\tau}^2 - 2775\pi^2 + 300n_f\pi^2 - 241800 \log 2 \\
+ 202500 \log 3 - 110700 \text{Li}_2 \left(\frac{1}{4} \right) \right]
\]

\[
L_{\mu\tau} = \log(2\mu^2\tau) + \gamma_E, \quad \mu = \frac{C}{\sqrt{\tau}}
\]

- Choose \(C \) such that logs remain small
Using GF to Renormalise Matrix Elements for Mixing and Lifetimes

![Graph showing the relationship between \(\tau \) and \(\zeta^{-1} \)]

- Combine with perturbative matching \(\rightarrow \overline{\text{MS}} \)
- Relate to regular operators in 'short-flow-time expansion':
 \[
 \sim O_n(\tau) = \sum m \zeta^{-1}_{nm}(\tau) O_m(\tau) + O(\tau)
 \]

- Calculated at two-loop for \(B_1 \) based on [Harlander, Lange '22]:
 \[
 \zeta^{-1}_{B_1}(\mu, \tau) = 1 + a_s^4 \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + 2a_s^2 \left(0n_f + 6000 n_f L_{\mu\tau} \right) + 241800 \log 2
 \]

- Choose \(C \) such that logs remain small

\(L_{\mu\tau} = \log(2\mu^2/\tau) \)
Better choices for μ may exist to extend 'short-flow-time region'
Summary

- $\Delta B = 0$ four-quark matrix elements are strongly-desired quantities
 - Standard renormalisation introduces mixing with operators of lower mass dimension
 - We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure

- Testing method first with $\Delta Q = 2$ matrix elements

- Shown first simulations for $\Delta C = 2$

Next Steps:
- Simulate on all ensembles with multiple valence quark masses
- Extrapolate to physical $B_{(s)}$ meson mixing
- Repeat analysis for quark-line connected $\Delta B = 0$ matrix elements
- Consider disconnected contributions