Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes

Matthew Black

In collaboration with: R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel

August 2, 2023

- ➤ B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics → high precision in theory needed!

- ➤ B-meson mixing and lifetimes are measured experimentally to high precision
 - ► Key observables for probing New Physics → high precision in theory needed!

- ➤ B-meson mixing and lifetimes are measured experimentally to high precision
 - **▶** Key observables for probing New Physics **▶** high precision in theory needed!
- ➤ For lifetimes and decay rates, we use the **Heavy Quark Expansion**

$$\Gamma_{B_q} = \Gamma_3 \langle \mathcal{O}_{D=3} \rangle + \Gamma_5 \frac{\langle \mathcal{O}_{D=5} \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_{D=6} \rangle}{m_b^3} + \ldots + 16 \pi^2 \left[\widetilde{\Gamma}_6 \frac{\langle \widetilde{\mathcal{O}}_{D=6} \rangle}{m_b^3} + \widetilde{\Gamma}_7 \frac{\langle \widetilde{\mathcal{O}}_{D=7} \rangle}{m_b^4} + \ldots \right]$$

- ➤ Factorise observables into → perturbative QCD contributions
 - **→** Non-Perturbative Matrix Elements

- lacktriangle Four-quark $\Delta B=0$ and $\Delta B=2$ matrix elements can be determined from lattice QCD simulations
- ► $\Delta B = 2$ well-studied by several groups → precision increasing [Tsang, Wed 09:20]
 - ightharpoonup preliminary $\Delta K=2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ = exploratory studies from \sim 20 years ago + new developments for lifetime ratios [Lin, Detmold, Meinel '22]
 - contributions from disconnected diagrams
 - mixing with lower dimension operators in renormalisation [Lin, Wed 09:00]

- Four-quark $\Delta B=0$ and $\Delta B=2$ matrix elements can be determined from lattice QCD simulations
- ► $\Delta B = 2$ well-studied by several groups → precision increasing [Tsang, Wed 09:20]
 - ightharpoonup preliminary $\Delta K = 2$ for Kaon mixing study with gradient flow [Suzuki et al. '20], [Taniguchi, Lattice '19]
- ► $\Delta B = 0$ = exploratory studies from \sim 20 years ago + new developments for lifetime ratios [Lin, Detmold, Meinel '22]
 - contributions from disconnected diagrams
 - mixing with lower dimension operators in renormalisation [Lin, Wed 09:00]

- 1. Establish gradient flow renormalisation procedure with $\Delta B=2$ matrix elements
- 2. Pioneer **connected** $\Delta B = 0$ matrix element calculation
- 3. Tackle disconnected contributions

- Formulated by [Lüscher '10], [Lüscher '13] \Rightarrow scale setting, RG β -function, **renormalisation**...
- \blacktriangleright Introduce auxiliary dimension, **flow time** τ as a way to regularise the UV
- ➤ Extend gauge and fermion fields in flow time and express dependence with first-order differential equations:

$$\partial_t B_{\mu}(\tau, x) = \mathcal{D}_{\nu}(\tau) G_{\nu\mu}(\tau, x), \quad B_{\mu}(0, x) = A_{\mu}(x),$$

$$\partial_t \chi(\tau, x) = \mathcal{D}^2(\tau) \chi(\tau, x), \quad \chi(0, x) = q(x).$$

➤ Re-express effective Hamiltonian in terms of 'flowed' operators:

$$\mathcal{H}_{\text{eff}} = \sum_{n} C_{n} \mathcal{O}_{n} = \sum_{n} \widetilde{C}_{n}(\tau) \widetilde{\mathcal{O}}_{n}(\tau).$$

Relate to regular operators in 'short-flow-time expansion':

$$\mathcal{O}_n(\tau) = \sum_m \zeta_{nm}(\tau)\mathcal{O}_m + O(\tau)$$

'flowed' MEs calculated on lattice replacing $A_{\mu}, q \rightarrow B_{\mu}, \chi$

r,
ho, c solution p, μ, μ, h new Feynman diagrams

matching matrix calculated perturbatively

➤ We will consider RBC/UKQCD's 2+1 flavour Shamir DWF + Iwasaki gauge action ensembles [Shamir '93] [Iwasaki, Yoshie '84] [Iwasaki '85]

	L	T	a^{-1}/GeV	am_{I}^{sea}	am_s^{sea}	$M_{\pi}/{\sf MeV}$	$srcs \times N_{conf}$	
	24	64	1.7848	$\frac{\iota}{0.005}$	0.040	340	32 × 101	:
C2	24	64	1.7848	0.010	0.040	433	32×101	
M1	32	64	2.3833	0.004	0.030	302	32×79	
M2	32	64	2.3833	0.006	0.030	362		[Allton et al. '08]
М3	32	64	2.3833	0.008	0.030	411		[Aoki et al. '10] [Blum et al. '14]
F1S	48	96	2.785	0.002144	0.02144	267		[Boyle et al. '17]

- ➤ Exploratory simulations on C1, C2, M1 so far
- To remove additional extrapolations in valence sector, we simulate at physical charm and strange
 - ightharpoonup "neutral D_s " meson mixing

- ➤ Fully-relativistic DWF for all valence quarks
- ➤ Strange quarks tuned to physical value (Shamir DWF)
- \blacktriangleright Heavy c quarks tuned for physical D_s mass (Möbius DWF)
 - $\Rightarrow am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- ➤ Z2 wall sources for all quark propagators [Boyle et al. '08]
 - ⇒ Sources for strange propagators are also Gaussian smeared [Allton et al. '93]
- ➤ Calculate **non-eye** weak 3-point functions

- ➤ Fully-relativistic DWF for all valence quarks
- ➤ Strange quarks tuned to physical value (Shamir DWF)
- \blacktriangleright Heavy c quarks tuned for physical D_s mass (Möbius DWF)
 - \Rightarrow $am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- ➤ Z2 wall sources for all quark propagators [Boyle et al. '08]
 - ► Sources for strange propagators are also Gaussian smeared [Allton et al. '93]

- ➤ Fully-relativistic DWF for all valence quarks
- ➤ Strange quarks tuned to physical value (Shamir DWF)
- \blacktriangleright Heavy c quarks tuned for physical D_s mass (Möbius DWF)
 - $\Rightarrow am_c \lesssim 0.7$ with stout smearing of gauge fields [Morningstar, Peardon '03]
- ➤ Z2 wall sources for all quark propagators [Boyle et al. '08]
 - ⇒ Sources for strange propagators are also Gaussian smeared [Allton et al. '93]
- ➤ Calculate **non-eye** weak 3-point functions
- ➤ Valence simulations carried out using Hadrons [Portelli et al. '22]
- ➤ Implemented gradient flow in Hadrons with 4D Laplacian for fermion evolution
- ▶ Gauge and fermion fields evolved with $\epsilon = 0.01$
- \blacktriangleright Measurements taken every 10 steps for $\tau/a^2 < 5$

ightharpoonup Look at Bag parameters and their behaviour with the flow time au

$$R_{1}(\tau) = \frac{C_{\mathcal{O}_{1}}^{3\text{pt}}(t, \Delta t, \tau)}{C_{AP}^{2\text{pt}}(t, \tau) C_{PA}^{2\text{pt}}(\Delta T - t, \tau)} \to B_{1}(\tau),$$

$$R_{i}(\tau) = \frac{C_{\mathcal{O}_{i}}^{3\text{pt}}(t, \Delta t, \tau)}{C_{PP}^{2\text{pt}}(t, \tau) C_{PP}^{2\text{pt}}(\Delta T - t, \tau)} \to B_{i}(\tau), i = 2 \to 5$$

 \blacktriangleright We seek a **suitable window** in flow time where the au-dependences of flowed matrix elements and perturbative coefficients cancel

➤ different lattice spacings overlap in physical flow time → mild continuum limit

➤ continuum limit very flat at positive flow time ✔

➤ Relate to regular operators in 'short-flow-time expansion':

'flowed' MEs calculated on lattice
$$\overset{\sim}{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + \mathit{O}(\tau)$$
 matching matrix calculated perturbatively

➤ Relate to regular operators in 'short-flow-time expansion':

$$\overset{\sim}{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + O(\tau)$$
 'flowed' MEs calculated on lattice
$$\overset{\sim}{\sum_m} \zeta_{nm}^{-1}(\mu,\tau) \langle \overset{\sim}{\mathcal{O}}_n \rangle(\tau) = \langle \mathcal{O}_m \rangle(\mu)$$
 calculated perturbatively

➤ Relate to regular operators in 'short-flow-time expansion':

$$\overset{\sim}{\mathcal{O}}_n(\tau) = \sum_m \zeta_{nm}(\tau) \mathcal{O}_m + O(\tau)$$
 'flowed' MEs calculated on lattice
$$\overset{\sim}{\sum_m} \zeta_{nm}^{-1}(\mu,\tau) \langle \overset{\sim}{\mathcal{O}}_n \rangle(\tau) = \langle \mathcal{O}_m \rangle(\mu)$$
 calculated perturbatively

 \blacktriangleright Calculated at two-loop for \mathcal{B}_1 based on [Harlander, Lange '22]:

$$\zeta_{\mathcal{B}_{1}}^{-1}(\mu,\tau) = 1 + \frac{a_{s}}{4} \left(-\frac{11}{3} - 2L_{\mu\tau} \right) + \frac{a_{s}^{2}}{43200} \left[-2376 - 79650L_{\mu\tau} - 24300L_{\mu\tau}^{2} + 8250n_{f} + 6000 n_{f}L_{\mu\tau} \right. \\
+ 1800 n_{f}L_{\mu\tau}^{2} - 2775\pi^{2} + 300 n_{f}\pi^{2} - 241800 \log 2$$

$$L_{\mu\tau} = \log(2\mu^{2}\tau) + \gamma_{E}, \quad \mu = \frac{C}{\sqrt{\tau}} + 202500 \log 3 - 110700 \operatorname{Li}_{2}\left(\frac{1}{4}\right) \right]$$

➤ Choose C such that logs remain small

Using GF to Renormalise

Matrix Elements for Mixing and Lifetimes

 \blacktriangleright Better choices for μ may exist to extend 'short-flow-time region'

- $ightharpoonup \Delta B = 0$ four-quark matrix elements are strongly-desired quantities
 - ⇒ Standard renormalisation introduces mixing with operators of lower mass dimension
 - → We aim to use the fermionic gradient flow as a non-perturbative renormalisation procedure
- ightharpoonup Testing method first with $\Delta Q=2$ matrix elements
- \blacktriangleright Shown first simulations for $\Delta C = 2$

Next Steps:

- ➤ Simulate on all ensembles with multiple valence quark masses
- \blacktriangleright Extrapolate to physical $B_{(s)}$ meson mixing
- \blacktriangleright Repeat analysis for quark-line connected $\Delta B=0$ matrix elements
- Consider disconnected contributions