Baryonic screening masses in high temperature QCD

Pietro Rescigno

University of Milano - Bicocca, INFN Milano - Bicocca

In collaboration with: Leonardo Giusti, Tim Harris, Davide Laudicina, Michele Pepe

The 40th International Symposium on Lattice Field Theory Fermilab, Batavia, U.S.A. August 1st 2023

2023

Summary

- $\circ\,$ The baryonic screening spectrum is analysed at 12 temperatures between $\sim 1~{\rm GeV}$ and $\sim 160~{\rm GeV}$
- Simulations of Lattice QCD with $N_f = 3$ Wilson quarks in the chiral limit
- First continuum results in this temperature range, with sub percent precision

Summary

- $\circ\,$ The baryonic screening spectrum is analysed at 12 temperatures between $\sim 1~{\rm GeV}$ and $\sim 160~{\rm GeV}$
- Simulations of Lattice QCD with $N_f = 3$ Wilson quarks in the chiral limit
- First continuum results in this temperature range, with sub percent precision

- Study properties of Quark-Gluon Plasma from first principles
- Probe nature of QCD in the high temperature regime

• Nucleon interpolating operator: $N(x) = \varepsilon^{abc} \left[u_a^T(x) C \gamma_5 d_b(x) \right] d_c(x)$

• Nucleon interpolating operator: $N(x) = \varepsilon^{abc} \left[u_a^T(x) C \gamma_5 d_b(x) \right] d_c(x)$

• Thermal theory \implies Periodicity in $x_0 \implies$ Fermionic Matsubara frequencies

 $\omega_n = (2n+1)\pi T$ Lowest frequency: $\omega_0 = \pi T$

• Nucleon interpolating operator: $N(x) = \varepsilon^{abc} \left[u_a^T(x) C \gamma_5 d_b(x) \right] d_c(x)$

• Thermal theory \implies Periodicity in $x_0 \implies$ Fermionic Matsubara frequencies

 $\omega_n = (2n+1)\pi T$ Lowest frequency: $\omega_0 = \pi T$

• Correlator projected to given frequency and definite x_3 - parity:

$$C_{N^{\pm}}(x_3) = \sum_{x_0, x_1, x_2} e^{i\omega_0 x_0} \left\langle \text{Tr}\{N(x)\bar{N}(0)P_{\pm}\}\right\rangle, \quad P_{\pm} = \frac{\mathbb{1} \pm \gamma_3}{2}$$

- Nucleon interpolating operator: $N(x) = \varepsilon^{abc} \left[u_a^T(x) C \gamma_5 d_b(x) \right] d_c(x)$
- Thermal theory \implies Periodicity in $x_0 \implies$ Fermionic Matsubara frequencies

$$\omega_n = (2n+1)\pi T$$
 Lowest frequency: $\omega_0 = \pi T$

• Correlator projected to given frequency and definite x_3 - parity:

$$C_{N^{\pm}}(x_3) = \sum_{x_0, x_1, x_2} e^{i\omega_0 x_0} \left\langle \text{Tr}\{N(x)\bar{N}(0)P_{\pm}\}\right\rangle, \quad P_{\pm} = \frac{\mathbb{1} \pm \gamma_3}{2}$$

• Screening mass characterizes exponential fall-off (inverse correlation length)

$$C_{N\pm}(x_3) \underset{x_3 \to \infty}{\sim} \exp\{-m_{N\pm}x_3\} \left(1 + O\left(e^{-\Delta m_{N\pm}x_3}\right)\right)$$
$$m_{N\pm} = \lim_{x_3 \to \infty} \underbrace{-\frac{d}{dx_3} \ln\left[C_{N\pm}(x_3)\right]}_{m_{N\pm}^{\text{eff}}(x_3)}$$
Free theory: $m_{N\pm} = 3\pi T$

- Nucleon interpolating operator: $N(x) = \varepsilon^{abc} \left[u_a^T(x) C \gamma_5 d_b(x) \right] d_c(x)$
- \circ Thermal theory \implies Periodicity in $x_0 \implies$ Fermionic Matsubara frequencies

$$\omega_n = (2n+1)\pi T$$
 Lowest frequency: $\omega_0 = \pi T$

• Correlator projected to given frequency and definite x_3 - parity:

$$C_{N^{\pm}}(x_3) = \sum_{x_0, x_1, x_2} e^{i\omega_0 x_0} \left\langle \text{Tr}\{N(x)\bar{N}(0)P_{\pm}\}\right\rangle, \quad P_{\pm} = \frac{1 \pm \gamma_3}{2}$$

• Screening mass characterizes exponential fall-off (inverse correlation length)

$$C_{N\pm}(x_3) \underset{x_3 \to \infty}{\sim} \exp\{-m_{N\pm}x_3\} \left(1 + O\left(e^{-\Delta m_{N\pm}x_3}\right)\right)$$
$$m_{N\pm} = \lim_{x_3 \to \infty} \underbrace{-\frac{d}{dx_3} \ln\left[C_{N\pm}(x_3)\right]}_{m_{N\pm}^{\text{eff}}(x_3)}$$
Free theory: $m_{N\pm} = 3\pi T$

• Opposite parity channels related by chiral symmetry: $C_{N^+}(x_3) \xrightarrow[Continuum]{SU(2)_A W.I.}{Continuum} - C_{N^-}(x_3)$

Degeneracy of screening masses when chiral symmetry is restored

he screening ma

Lattice strategy

Analysis

Conclusions & outlook

Т	T[GeV]	L ₀ /a	n _{mdu}	n _{skip}	
T ₀	164.6(5.6)	4	300	10	1
10	104.0(5.0)	6	390	10	
		4	300	10	1
T_1	82.3(2.8)	6	310	10	
1	02.3(2.0)	8	500	10	
		10	500	10	
		4	300	10	1
T_2	51.4(1.7)	6	320	10	
12	51.4(1.7)	8	490	10	
		10	500	10	
		4	300	10	1
T_3	32.8(1.0)	6	340	10	
13	32.0(1.0)	8	490	10	
		10	500	10	
		4	440	10	1
T_4	20.63(63)	6	310	10	
14	20.05(05)	8	490	10	
		10	500	10	
		4	310	10	1
T_5	12.77(37)	6	310	10	
15	12.11(51)	8	500	10	
		10	500	10	
		4	300	10	
T_6	8.03(22)	6	320	10	
16	5.05(22)	8	500	10	
		10	500	10	
		4	320	10	
T_7	4.91(13)	6	310	10	
17	+.91(13)	8	500	10	
		10	500	10	

Т	T[GeV]	L ₀ /a	$n_{ m mdu}$	$n_{ m skip}$
		4	320	10
T_8	3.040(78)	6	300	10
18	5.040(78)	8	500	10
		10	500	10
		4	400	10
T_9	2.833(68)	6	390	10
	. ,	8	390	10
		4	410	10
T_{10}	1.821(39)	6	400	10
	· · · ·	8	400	10
		4	400	10
T_{11}	1.167(23)	6	390	10
	× ,	8	400	10

 $\circ~12$ temperature values $T_{0,\ldots,11}$ between 1.167 GeV and 164.6 GeV

• 4 lattice spacings $L_0/a = 4, 6, 8, 10,$ $L_i/a = 288 \Rightarrow TL \sim 20 - 50$ Finite volume effects suppressed exponentially in $g^2 TL$

• $N_f = 3$ flavors of O(a) improved massless Wilson fermions

The screening ma

Lattice strategy

Analysis

Conclusions & outlook

Т	T[GeV]	L ₀ /a	$n_{ m mdu}$	n _{skip}
T ₀	164.6(5.6)	4	300	10
10	104.0(0.0)	6	390	10
		4	300	10
T_1	82.3(2.8)	6	310	10
1 1	02.3(2.0)	8	500	10
		10	500	10
		4	300	10
T_2	51.4(1.7)	6	320	10
12	51.4(1.7)	8	490	10
		10	500	10
		4	300	10
T_3	32.8(1.0)	6	340	10
13	52.0(1.0)	8	490	10
		10	500	10
		4	440	10
T_4	20.63(63)	6	310	10
14	20.03(03)	8	490	10
		10	500	10
		4	310	10
T_5	12.77(37)	6	310	10
15	12.11(51)	8	500	10
		10	500	10
		4	300	10
T ₆	8.03(22)	6	320	10
16	0.03(22)	8	500	10
		10	500	10
		4	320	10
T_7	4.91(13)	6	310	10
· ′	1.51(15)	8	500	10
		10	500	10

Т	T[GeV]	L ₀ /a	n _{mdu}	$n_{ m skip}$
		4	320	10
T ₈	3.040(78)	6	300	10
18	3.040(78)	8	500	10
		10	500	10
		4	400	10
T_9	2.833(68)	6	390	10
		8	390	10
		4	410	10
T_{10}	1.821(39)	6	400	10
	()	8	400	10
		4	400	10
T_{11}	1.167(23)	6	390	10
	()	8	400	10

• Shifted boundary conditions [Giusti, Meyer 2011-13]

$$U_{\mu}(\mathbf{x}_{0} + L_{0}, \mathbf{x}) = U_{\mu}(\mathbf{x}_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$

$$\psi(\mathbf{x}_{0} + L_{0}, \mathbf{x}) = -\psi(\mathbf{x}_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$

The screening ma

Lattice strategy

Analysis

Conclusions & outlook

Т	T[GeV]	L ₀ /a	n _{mdu}	$n_{ m skip}$
T ₀	164.6(5.6)	4	300	10
10	104.0(3.0)	6	390	10
		4	300	10
T_1	82.3(2.8)	6	310	10
1	02.3(2.0)	8	500	10
		10	500	10
		4	300	10
T_2	51.4(1.7)	6	320	10
12	51.4(1.7)	8	490	10
		10	500	10
		4	300	10
T_3	32.8(1.0)	6	340	10
13	52.0(1.0)	8	490	10
		10	500	10
		4	440	10
T_4	20.63(63)	6	310	10
14	20.03(03)	8	490	10
		10	500	10
		4	310	10
T_5	12.77(37)	6	310	10
15	12.11(51)	8	500	10
		10	500	10
		4	300	10
T_6	8.03(22)	6	320	10
16	0.03(22)	8	500	10
		10	500	10
		4	320	10
T_7	4.91(13)	6	310	10
17	+.91(13)	8	500	10
		10	500	10

Т	T[GeV]	L ₀ /a	$n_{ m mdu}$	$n_{ m skip}$
		4	320	10
T	3.040(78)	6	300	10
T_8	5.040(78)	8	500	10
		10	500	10
		4	400	10
T_9	2.833(68)	6	390	10
	. ,	8	390	10
		4	410	10
T_{10}	1.821(39)	6	400	10
	()	8	400	10
		4	400	10
T_{11}	1.167(23)	6	390	10
	()	8	400	10

• Shifted boundary conditions [Giusti, Meyer 2011-13]

$$U_{\mu}(x_0 + L_0, \mathbf{x}) = U_{\mu}(x_0, \mathbf{x} - L_0\boldsymbol{\xi})$$

$$\psi(x_0 + L_0, \mathbf{x}) = -\psi(x_0, \mathbf{x} - L_0\boldsymbol{\xi})$$

• Periodicity in a tilted system of length $L_0\sqrt{1+\boldsymbol{\xi}^2} \implies T = 1/\left(L_0\sqrt{1+\boldsymbol{\xi}^2}\right)$ $\boldsymbol{\xi} = (1,0,0) \implies T = 1/\left(\sqrt{2}L_0\right)$ Phase factor: $\omega_0 x_0 \rightarrow \omega_0 (x_0 + x_1)/2$

The screening mass

Lattice strategy

Analysis

Conclusions & outlook

Т	T[GeV]	L ₀ /a	n _{mdu}	$n_{ m skip}$
T ₀	164.6(5.6)	4	300	10
10	104.0(3.0)	6	390	10
		4	300	10
T_1	82.3(2.8)	6	310	10
'1	02.3(2.0)	8	500	10
		10	500	10
		4	300	10
T_2	51.4(1.7)	6	320	10
12	51.4(1.7)	8	490	10
		10	500	10
		4	300	10
T_3	32.8(1.0)	6	340	10
13		8	490	10
		10	500	10
	20.63(63)	4	440	10
T_4		6	310	10
14		8	490	10
		10	500	10
		4	310	10
T_5	12.77(37)	6	310	10
15	12.11(31)	8	500 10	10
		10	500	10
		4	300	10
T_6	8.03(22)	6	320	10
16	0.03(22)	8	500	10
		10	500	10
		4	320	10
T_7	4.91(13)	6	310	10
17	4.91(13)	8	500	10
		10	500	10

Т	T[GeV]	L ₀ /a	$n_{ m mdu}$	n _{skip}
		4	320	10
T_8	3.040(78)	6	300	10
18	5.040(78)	8	500	10
		10	500	10
		4	400	10
T_9	2.833(68)	6	390	10
	. ,	8	390	10
		4	410	10
T_{10}	1.821(39)	6	400	10
	()	8	400	10
		4	400	10
T_{11}	1.167(23)	6	390	10
	()	8	400	10

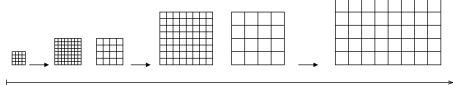
Shifted boundary conditions [Giusti, Meyer 2011-13]

$$U_{\mu}(\mathbf{x}_{0} + L_{0}, \mathbf{x}) = U_{\mu}(\mathbf{x}_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$

$$\psi(\mathbf{x}_{0} + L_{0}, \mathbf{x}) = -\psi(\mathbf{x}_{0}, \mathbf{x} - L_{0}\boldsymbol{\xi})$$

- Periodicity in a tilted system of length $L_0\sqrt{1+\xi^2} \implies T = 1/(L_0\sqrt{1+\xi^2})$ $\xi = (1,0,0) \implies T = 1/(\sqrt{2}L_0)$ Phase factor: $\omega_0 x_0 \rightarrow \omega_0 (x_0 + x_1)/2$
- Mesonic case [Dalla Brida et al. 2021]

• Hadronic scheme: $M_{\text{Had}} = M_{\text{Had}}^{\text{Phys}}$ would require $a \ll \frac{1}{T} \ll \frac{1}{M_{\text{Had}}} \ll L$


• Hadronic scheme: $M_{\text{Had}} = M_{\text{Had}}^{\text{Phys}}$ would require $a \ll \frac{1}{T} \ll \frac{1}{M_{\text{Had}}} \ll L$

 $\circ~$ Instead: fix $\bar{g}^2(g_0,a\mu)=\bar{g}^2(\mu)$ with $a\mu\ll 1,\,\mu\sim {\cal T}$

• Hadronic scheme: $M_{\text{Had}} = M_{\text{Had}}^{\text{Phys}}$ would require $a \ll \frac{1}{T} \ll \frac{1}{M_{\text{Had}}} \ll L$

• Instead: fix $\bar{g}^2(g_0, a\mu) = \bar{g}^2(\mu)$ with $a\mu \ll 1, \mu \sim T$ • Non-perturbative $\bar{g}^2(\mu) \begin{cases} T_0 - T_8$: Schrödinger functional, $T = \frac{1}{\sqrt{2}L_0} = \frac{1}{\sqrt{2}L_{SF}} = \frac{\mu_{SF}}{\sqrt{2}} \\ T_9 - T_{11}$: Gradient flow, $T = \frac{1}{\sqrt{2}L_0} = \frac{2}{\sqrt{2}L_{GF}} = \sqrt{2}\mu_{GF} \end{cases}$ [ALPHA collaboration, '93,2016-18]

Bridge high energies (small L) to low energies (large L) via step scaling techniques

$$\mu = 1/L$$

Pietro Rescigno (UniMiB)

Baryonic screening masses in high temperature QCD

5 / 10

 $\mu = 1/(2^{k}L)$

• Hadronic scheme: $M_{\text{Had}} = M_{\text{Had}}^{\text{Phys}}$ would require $a \ll \frac{1}{T} \ll \frac{1}{M_{\text{Had}}} \ll L$

• Instead: fix $\bar{g}^2(g_0, a\mu) = \bar{g}^2(\mu)$ with $a\mu \ll 1, \mu \sim T$ • Non-perturbative $\bar{g}^2(\mu) \begin{cases} T_0 - T_8$: Schrödinger functional, $T = \frac{1}{\sqrt{2}L_0} = \frac{1}{\sqrt{2}L_{SF}} = \frac{\mu_{SF}}{\sqrt{2}} \\ T_9 - T_{11}$: Gradient flow, $T = \frac{1}{\sqrt{2}L_0} = \frac{2}{\sqrt{2}L_{GF}} = \sqrt{2}\mu_{GF}$ [ALPHA collaboration, '93,2016-18]

Bridge high energies (small L) to low energies (large L) via step scaling techniques

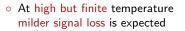
• Fix an hadronic scale M_{Had} at low energies [Bruno et al., 2017]

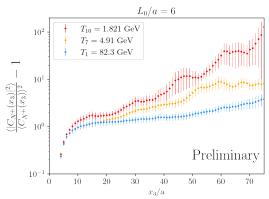
M_{Had}

 $\mu = 1/(2^{k}L)$

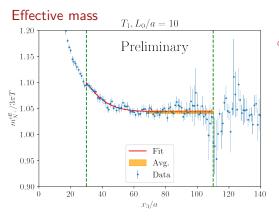
Pietro Rescigno (UniMiB)

 $\mu = 1/L$

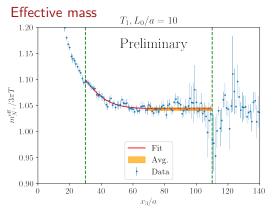

 Correlator Noise-to-Signal ratio grows exponentially with distance at zero temperature [Parisi 1984, Lepage 1989]


- Correlator Noise-to-Signal ratio grows exponentially with distance at zero temperature [Parisi 1984, Lepage 1989]
- In the infinite temperature limit there is no exponential problem for $C_{N^{\pm}}(x_3)$

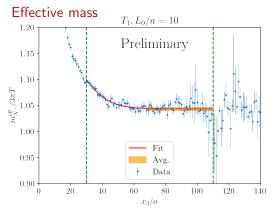
- Correlator Noise-to-Signal ratio grows exponentially with distance at zero temperature [Parisi 1984, Lepage 1989]
- In the infinite temperature limit there is no exponential problem for $C_{N^{\pm}}(x_3)$
- At high but finite temperature milder signal loss is expected


$$\frac{\langle |C_{N^{\pm}}(x_{3})|^{2} \rangle - \langle C_{N^{\pm}}(x_{3}) \rangle^{2}}{\langle C_{N^{\pm}}(x_{3}) \rangle^{2}} \sim \exp\{(2m_{N^{\pm}} - 3m_{S/P})x_{3}\} \\ \downarrow T \rightarrow \infty \qquad \downarrow \\ 3\pi T \qquad 2\pi T$$

- Correlator Noise-to-Signal ratio grows exponentially with distance at zero temperature [Parisi 1984, Lepage 1989]
- In the infinite temperature limit there is no exponential problem for $C_{N^{\pm}}(x_3)$

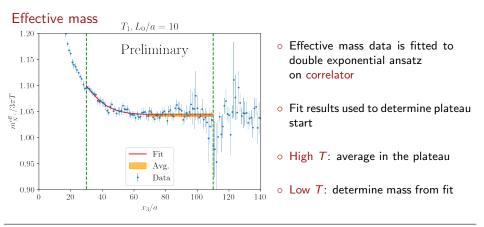


$$\frac{\langle |C_{N^{\pm}}(x_{3})|^{2} \rangle - \langle C_{N^{\pm}}(x_{3}) \rangle^{2}}{\langle C_{N^{\pm}}(x_{3}) \rangle^{2}} \sim \exp\{(2m_{N^{\pm}} - 3m_{S/P})x_{3}\}$$
$$\downarrow T \rightarrow \infty \qquad \downarrow$$
$$3\pi T \qquad 2\pi T$$



• Effective mass data is fitted to double exponential ansatz on correlator

Pietro Rescigno (UniMiB)

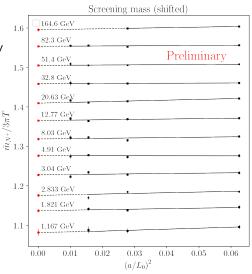


- Effective mass data is fitted to double exponential ansatz on correlator
- Fit results used to determine plateau start

- Effective mass data is fitted to double exponential ansatz on correlator
- Fit results used to determine plateau start
- High T: average in the plateau
- Low T: determine mass from fit

Analysis

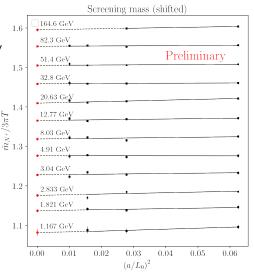
Tree Level Improvement


Tree level screening mass at finite lattice spacing computed analytically : $m_{N^{\pm}}^{\text{Free}}(L_0/a)$ Accelerate continuum limit extrapolation by defining tree level improved screening mass:

$$\overline{m}_{N^{\pm}}(L_0/a) \equiv m_{N^{\pm}}(L_0/a) - (m_{N^{\pm}}^{\text{Free}}(L_0/a) - 3\pi T)$$

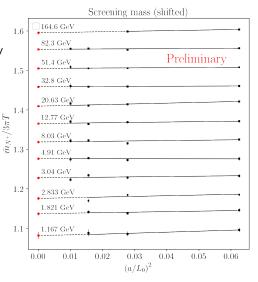
Continuum extrapolation

Nucleon screening mass


• *O*(*a*) improvement: excellent fit quality for constant + quadratic polynomial

Continuum extrapolation

Nucleon screening mass


- O(a) improvement: excellent fit quality for constant + quadratic polynomial
- TLI: $(a/L_0)^2$ coefficients compatible with 0: small discretization effects

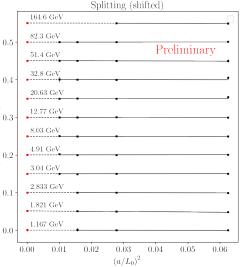
Continuum extrapolation

Nucleon screening mass

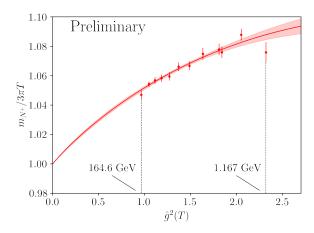
- O(a) improvement: excellent fit quality for constant + quadratic polynomial
- TLI: $(a/L_0)^2$ coefficients compatible with 0: small discretization effects
- Continuum extrapolated values obtained with sub-percent precision, in most cases errors below 0.5%

 $- \bar{m}_{N^-}$) / $3\pi T$

 \bar{m}_{N^+}

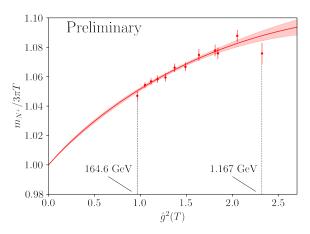

Continuum extrapolation

Nucleon screening mass

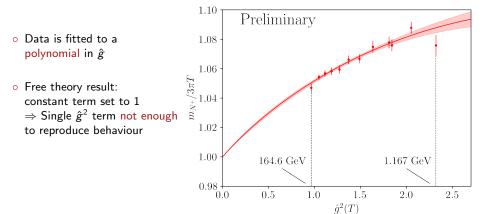

- O(a) improvement: excellent fit quality for constant + quadratic polynomial
- TLI: $(a/L_0)^2$ coefficients compatible with 0: small discretization effects
- Continuum extrapolated values obtained with sub-percent precision, in most cases errors below 0.5%

Parity splitting

• $(m_{N^+} - m_{N^-})$ compatible with 0 for all temperatures and lattice spacings

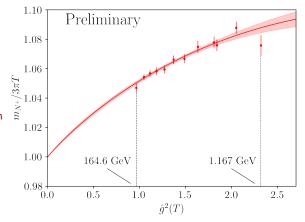


$$\circ \ \frac{m_{N^+}}{3\pi T} \text{ displayed as a function of } \hat{g}^2(T) \equiv \left(\frac{9}{8\pi^2} \ln \frac{2\pi T}{\Lambda_{\overline{\text{MS}}}} + \frac{4}{9\pi^2} \ln \left(2 \ln \frac{2\pi T}{\Lambda_{\overline{\text{MS}}}}\right)\right)^{-1}$$



$$\circ \ \frac{m_{N^+}}{3\pi T} \text{ displayed as a function of } \hat{g}^2(T) \equiv \left(\frac{9}{8\pi^2} \ln \frac{2\pi T}{\Lambda_{\overline{\text{MS}}}} + \frac{4}{9\pi^2} \ln \left(2 \ln \frac{2\pi T}{\Lambda_{\overline{\text{MS}}}}\right)\right)^{-1}$$

• Data is fitted to a polynomial in \hat{g}



$$p = rac{m_{N^+}}{3\pi T}$$
 displayed as a function of $\hat{g}^2(T) \equiv \left(rac{9}{8\pi^2} \ln rac{2\pi T}{\Lambda_{\overline{ ext{MS}}}} + rac{4}{9\pi^2} \ln \left(2 \ln rac{2\pi T}{\Lambda_{\overline{ ext{MS}}}}\right)
ight)^{-1}$

$$p = rac{m_{N^+}}{3\pi T}$$
 displayed as a function of $\hat{g}^2(T) \equiv \left(rac{9}{8\pi^2} \ln rac{2\pi T}{\Lambda_{\overline{ ext{MS}}}} + rac{4}{9\pi^2} \ln \left(2 \ln rac{2\pi T}{\Lambda_{\overline{ ext{MS}}}}\right)
ight)^{-1}$

- Data is fitted to a polynomial in ĝ
- Free theory result: constant term set to 1 \Rightarrow Single \hat{g}^2 term not enough to reproduce behaviour
- Leaving constant term free (with curvature) yields fit results compatible with 1

Conclusions

- Bulk of the nucleon screening mass is given by free theory contribution $3\pi T$
- \circ Interactions induce $\sim 4\%$ to $\sim 8\%$ deviations, clearly visible with high statistical precision of few per-mil
- Chiral symmetry restoration: opposite parity channels degenerate within accuracy
- Single \hat{g}^2 term unable to explain results in this temperature range

Outlook

- Conclude analysis and publish results
- Investigate screening masses of non-static mesonic fields in the same temperature range

Thank you for your attention!