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Motivations

Our main goal in this talk is to develop classical and quantum
simulations to probe AdS/CFT correspondence.

A great candidate for this is the Hyperbolic Ising chain since it can be
easily simulated using DMRG and TEBD algorihtms as well as usual
quantum simulation techniques.

Ising Hamiltonian matches very closely to Rydberg Hamiltonian which
opens posibilities to use Rydberg Arrays for quantum simulating this
model.

Information spread in hyperbolic spaces has many applications both in
physics and quantum information sciences.
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Hyperbolic Space & AdS/CFT

The AdS/CFT correspondence is a very powerful tool that provides a
duality between strongly coupled d-dimensional critical systems and
weakly coupled d + 1 dimensional gravitational theories on a
negatively curved background

The the d-dimensional non-gravitational conformal theory resides on
the boundary of AdSd+1 which makes this duality holographic in it’s
nature.
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AdS Space

Euclidean AdSd+1 has the following metric which has the topology of a
cylinder R×Hd . 1

ds2 = g00dt
2 + ds2Hd (1)

ds2 = ±`2 cosh2 ρdt2 + `2(dρ2 + sinh2 ρdΩ2
d−1) (2)

1Image taken from R. Brower et al. arXiv:2202.03464
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AdS2 Ising Hamiltonian

For AdS2 where d = 1 this cylindrical form reduces to a strip with 1D
conformal quantum mechanics at the each end and leads to the
following Ising Hamiltonian

HAdS = −J
∑
<ij>

(
cosh(ρi ) + cosh(ρj)

2
)σzi σ

z
j

+ h
∑
i

cosh(ρi )σ
x
i

+ m
∑
i

cosh(ρi )σ
z
i
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MPS,DMRG & TEBD

A Matrix Product State (MPS) |ψ〉 can be represented as,

Inner products are given as,

And expectation values,
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MPS,DMRG & TEBD

Density Matrix Renormalization Group (DMRG) is a variational
optimization technique that allows us to find the ground state of a
system that’s represented by a MPS.

The idea is to minimize,

〈ψA|Ĥ|ψA〉 − λ(〈ψA|ψA〉 − 1) (3)

This minimization corresponds to solving a generalized eigenvalue
problem which can be performed one site at a time and sweeping
across the chain.

When we obtain the desired accuracy for the ground state energy E
the corresponding MPS state gives an approximation of the ground
state.
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MPS,DMRG & TEBD

Time-evolving block decimation (TEBD) algorithm is used to simulate
the time evolution of one dimensional quantum many body systems.

The basic idea is to represent an initial state |ψ〉 as an MPS and
applying the trotterized time evolution operators that are expressed in
an MPO form.
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DMRG simulation of the AdS2 Hamiltonian

For simulations of this model using DMRG, we need to find a way to
control the hyperbolic deformation cosh(ρi ) for any given chain size N

1 Replace cosh(ρi ) with cosh(li ) where li ranges from −lmax to lmax

from the first site to the last one.
2 We start at the first site with cosh(−lmax) Then we increase li in

increments of δl = 2l/(N − 1) until we reach cosh(lmax) at the last
site.
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Ground State Properties

Using the DMRG algorithm we can investigate the ground state properties
of the Hyperbolic Ising Model,

First we calculate the half-chain Von-Neumann entropy for
N = 37, lmax = 3.0, h = 3.0,m = 0.25
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Magnetic Susceptibility

Next, we calculate the Magnetic Susceptibility for the same parameters,

Both the entropy and susceptibility peaks around J/h = 2.0 signaling a
possible phase transition in the model
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Time-Evolution of the Model

To obtain the time evolution we use the TEBD algorithm.

Below we plot the time evolution of 〈Sz〉 for
N = 37, lmax = 3.0, h = 2.0, and J = 2.0,m = 0.25

This interesting warping effect in the bulk can be related to the
time-dilation of the coefficient g00(ρ)
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Quantum Simulation of Hyperbolic Ising Model

This Hamiltonian can be easily generalized to obtain the
Suzuki-Trotter evolution on a Universal Quantum Computer

For the results of our quantum simulations see the next talk by
Muhammad Asaduzzaman
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Rydberg Simulation

We have the following Hamiltonian for the Rydberg atoms which can be
related to the Ising Hamiltonian as followsl,

ĤR(t) =
∑
j

Ωj(t)

2
(e iφj (t) |gj〉 〈rj |+ e−iφj (t) |rj〉 〈gj |)︸ ︷︷ ︸

σx

−
∑
j

∆j(t) n̂j︸︷︷︸
σz

+
∑
j<k

Vjk n̂j n̂k︸︷︷︸
σzσz

Where Vjk = C6/|rj − rk |6 and C6 = 2π × 862690MHzµm6
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Rydberg Simulation

To get a hyperbolic Ising like model with this Hamiltonian we need to
adjust the separation between the atoms such that Vjk matches the
form of the hyperbolic deformation by iteratively solving

δi+1 = (A/ηi )
1/6 + ri (4)

Doing this procedure for lmax = 3 results with N = 13 results in distances
that range in between 12.13µm to 17.72µm, and the furthest atom being
located at 180.77µm.
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Simulation of the Rydberg Hamiltonian

With all the ingredients of the Hamiltonian set we can calculate the
corresponding Rydberg density 〈ni 〉 for the system.

For Rydberg Simulations we used the Bloqade Software package
developed by QuEra.
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Out of Time Ordered Correlators & Information Spread

Now we focus on the question of how information spreads in the
Hyperbolic Ising chain, for that we calculate Out of Time Ordered
Correlators (OTOCs)

In general OTOCs have the following form

Fr (t) = Tr(W (t)†V †r W (t)Vr ) (5)

For the Ising case W and V can be taken as local Pauli operators.
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OTOCs & Information Spread

The connection between OTOC and operator growth can be made explicit
by introducing the squared commutator.

C (r , t) =
1

TrI
Tr([W (t),Vr ]†[W (t),Vr ]) = 2− 2F (r , t) (6)

The squared commutator depends on the number of the degrees of
freedom W (t) acts on.

At t = 0 W (t) acts only on one site and commutes with Vr that is
located away from W so C (r , t) = 0

As the system evolves under time, W (t) becomes more and more
non-local and starts to overlap with Vr which results in an increase in
C (r , t)
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Lightcone for Operator Growth

To make this relation more explicit consider the unitary time evolution
operator constructed out of local two qubit unitaries.
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Lightcone for Operator Growth

Then the Heisenberg time evolution for a local operator A(−t) = UAU† is
given by,
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OTOCs & Information Spread

In our calculations for the OTOC using TEBD we used this specific
form. 2

O(t) = Tr(ρW (t)V †W (t)V )/Tr(ρW (t)2V †V ) (7)

This definition ensures that O(t) = 1 when W (t) and V commute

Taking ρ ∼ I/D one can easily take the infinite temperature limit

Instead of calculating the trace we can also calculate the expectation
value of this operator on eigenstates of the Hamiltonian

2B. Vermersch et al. arXiv:1807.09087
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OTOCs & Information Spread

How O(t) spreads through the chain distinguishes between different
kinds of scrambling

1 O(t) ∼ log(λd) → fast scramblers like the SYK model and Black
Holes.

2 O(t) ∼ λdn → systems with infinite/long range interactions

3 O(t) ∼ λd → systems that saturate the Lieb-Robinson bound
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OTOCs in Hyperbolic Ising Model

Let’s start our discussion with OTOC calculations at the infinite
temperature limit.

N = 37, J = 6.0, h = 3.05,
m = 0.25, lmax = 0.0

N = 37, J = 6.0, h = 3.05,
m = 0.25, lmax = 3.0
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OTOCs in Hyperbolic Ising Model
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Phase Diagram for the OTOCs
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Conclusions

We developed MPS/MPO simulations for the Hyperbolic Ising Model.

We see that for suitable parameters Hyperbolic Ising model propagates
information in a logarithmic fashion.

This is important for a few reasons

Models that exhibits this kind of behavior are dependent on long
range interactions, time dependent Hamiltonians or random
interactions.

Our simple model which only has nearest neighbor and on-site
interactions managed to achive that wihtout the above complications.

This makes the hyperbolic Ising model very unique and a worthwhile
testbed for information propagation in quantum systems.
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Thanks for listening.
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OTOCs & Information Spread

We obtain W (t) by expressing W as an MPO state and applying
Heisenberg time evolution using TEBD.
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