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Finite-Temperature Correlation Functions

• Correlation functions can provide useful information about the nature of the
degrees of freedom in the thermal medium.

• Straightforward to calculate on the lattice for µB = 0 e.g. ifMH is a mesonic
operator, then〈
M†H(x)MH(0)

〉
=

1

Z(T )

∫
DU detM(T ) e−SG(T ) tr

[
P (x, 0)ΓHP

†(x, 0)Γ†H

]

• Here, x = (x, y, z, τ) is a point in Euclidean spacetime. P (x, 0) is the fermion
propagator while ΓH is a Dirac matrix that depends upon the spin of the
meson.

• Summing over x, y and τ projects the correlator on to px = py = ω = 0 in
Fourier space and gives us the screening correlator CH(z, T ) at temperature T :

CH(z, T ) =
1

N2
σNτ

∑
x,y,τ

〈
M†H(x)MH(0)

〉
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Sign Problem and Taylor Series Expansion

• For µB real and non-zero, detM(T, µB) becomes complex and importance
sampling breaks down. This is the well-known sign problem of lattice QCD.

• No complete solution known in the case of QCD. All approaches involve ex-
trapolation from either µB = 0 (Taylor series expansions, various kinds of
reweighting), or from imaginary µB (analytic continuation) where there is no
sign problem.

• More recent approaches have also tried to work directly with the complex
fermion determinant. (Lefschetz thimbles, complex Langevin, etc.)

• We will focus here on the Taylor series approach, in which the desired observ-
able is expanded in a Taylor series in µB and the first few Taylor coefficients
are calculated using lattice QCD. This yields an approximation to the exact
observable in a neighborhood of µB = 0.
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The Method of Taylor Expansions

• The Taylor series method applies equally well to bulk observables as well as
correlation functions.

• Originally applied to calculate the Equation of State at finite µB [R. Gavai and

S. Gupta, Phys. Rev. D 64, 074506 (2001); C. Allton et al. Phys. Rev. D 66,

074507 (2002)]:

P (T, µB)

T 4
=

1

V T 3
lnZ(T, µB) =

∞∑
n=0

χB2n(T )

(2n)!

(µB
T

)2n

• Only even powers of µB appear due to invariance of the system under µB →
−µB (particle-antiparticle symmetry).

• In this talk however, we will instead focus on the Taylor expansion of the
finite-density screening correlator CH(z, T, µB) [QCD-TARO, Phys. Rev. D 65,

054501 (2002), Phys. Lett. B 609, 265 (2005)]. Once again, only even powers of
µB appear:

CH(z, T, µB) =
∞∑
n=0

C
(2n)
H (z, T )

(2n)!

(µB
T

)2n
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Setup of the Calculation

• Instead of µB , we will work with finite isoscalar chemical potential µ`. It is
the two-flavor analog of µB :

µu µd µs µI

µB = µ µ µ µ 0
µ` = µ µ µ 0 0

• We will work with staggered fermions (Gamma matrices ΓH replaced by phase
factors ηH).

• A generic staggered correlator couples simultaneously to two mesons of the
same spin but opposite parities. This however is not true for the pion, hence
we will only consider the pion correlator from here on.

• Additionally, ηH = 1 everywhere for the pion case.

• We have computed the Taylor expansion of CH(z, T, µB) to fourth order in µB .
The derivatives act on both the quark propagator (correlator-like operators) as
well as the fermion determinant (trace-like operators).
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Screening Correlator: Free Theory

• The screening correlator for free massless quarks in the continuum is given by
[M. Vepsalainen, JHEP 03, 022 (2007)]

Cfree(z, T, µ`)

T 3
=

3

2

e−2πzT

zT

[(
1 +

1

2πzT

)
cos(2zµ`) +

µ`

πT
sin(2zµ`)

]
+O

(
e−4πzT

)
• For µ` = 0, we have:

Cfree(z, T, 0)

T 3
= Ae−Mz with M = 2πT and A =

3

2zT

(
1 +

1

2πzT

)

• We see that the effect of the chemical potential is to superpose an oscillatory
component on the exponential decay of the correlator.

• This is reminiscent of Friedel oscillations in metals, where quantum effects
superimpose oscillations on the exponentially decaying screening pattern pre-
dicted by the classical theory.
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Screening Correlator: Free Theory
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• By differentiating w.r.t. µ̂` ≡ µ`/T , we obtain the first few Taylor coefficients
as (with ẑ ≡ zT )

C
(0)
free(z, T )

T 3
=

3e−2πẑ

2ẑ

(
1 +

1

2πẑ

)
,

C
(2)
free(z, T )

T 3
= −6ẑe−2πẑ

(
1−

1

2πẑ

)
,

C
(4)
free(z, T )

T 3
= 24ẑ3e−2πẑ

(
1−

3

2πẑ

)
, C

(1)
free(z, T ) = C

(3)
free(z, T ) = 0.

• The non-vanishing Taylor coefficients alternate in sign, which is a
manifestation of the oscillatory nature of the correlator.
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Screening Correlator: Free Theory
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• Another way to see this is from the Taylor expansion of the amplitude of the
screening correlator:

Afree(z, T, µ`) ≡
(
Cfree

T 3

)
ẑ e2πẑ =

∞∑
k=0

A(k)(z, T )

k!

(µ`
T

)k
.

• The first N terms of the sum reproduce the oscillation up to a certain value of
µ̂`, after which they diverge. The lattice data agree well with the O(µ̂4

` )

expression.
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Screening Correlator: Free Theory
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• Our free theory results are in very good agreement with the exact expressions,
even at small ẑ.

• This agreement is also seen for the ratios:

Γfree(ẑ) ≡
C

(2)
free(z, T )

C
(0)
free(z, T )

and Σfree(ẑ) ≡
C

(4)
free(z, T )

C
(0)
free(z, T )

• The exponential factor cancels out in these ratios, resulting in a simple
polynomial behavior at large ẑ:

Γfree(ẑ) = −4ẑ2 +
4ẑ

π
−

2

π2
+O

(
ẑ−1

)
, Σfree(ẑ) = 16ẑ4 −

32ẑ3

π
+

16ẑ2

π2
+O (ẑ)
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Free Theory Correlator: Approach to the Asymptotic Limit
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• We see that Γfree and Σfree are respectively quadratic and quartic polynomials
in ẑ.

• Therefore Γfree/ẑ
2 and Σfree/ẑ

4 should approach constant values as ẑ → ∞.
However, the approach to the asymptotic limit is seen to be quite slow.

• We will see later that the finite temperature screening mass Taylor coefficients
can be determined from the coefficients of polynomial fits to Γ(ẑ) and Σ(ẑ).
Hence it is necessary to fit these quantities correctly.
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Fits to the Free Theory Correlator Derivatives

Fit range −α2 α1 −α0 β4 −β3 β2

1.0 ≤ ẑ ≤ 4.0
3.985(3) 1.20(1) 15.97(5) 10.21(19)
4.018(6) 1.37(3) 0.20(4) 16.39(18) 12.9(1.1) 4.0(1.6)

2.0 ≤ ẑ ≤ 4.0
3.995(4) 1.24(1) 15.99(7) 10.29(24)
4.04(2) 1.53(11) 0.44(17) 16.63(33) 14.4(2.1) 6.6(3.4)

Exact 4 ≈ 1.273 ≈ 0.203 16 ≈ 10.186 ≈ 1.621

• We fit Γfree(ẑ) and Σfree(ẑ) to the following polynomials:

Γfree(ẑ) = α2ẑ
2 + α1ẑ + α0, Σfree(ẑ) = β4ẑ

4 + β3ẑ
3 + β2ẑ

2.

• Retaining more coefficients allowed us to fit over a wider range. Without the
sub-leading coefficients, the fits yielded results that were very precise but ∼ 5σ

away from the exact results in some cases!

• Overall however, we obtained better results by keeping fewer coefficients but
fitting to larger zT .

11 / 19



Screening Mass Taylor Coefficients from Correlator Fits

• Remember that the free theory isoscalar correlator for massless quarks is given
by

Cfree(z, T, µ`)

T 3
=

3

2

e−2πzT

zT

[(
1 +

1

2πzT

)
cos(2zµ`) +

µ`

πT
sin(2zµ`)

]
+O

(
e−4πzT

)

• For µ` 6= 0, we can still write the correlator as Cfree(z) = A(z)e−Mz provided
we allow A and M to take complex values:

Cfree(z, T, µ`)

T 3
= Re

[
A(µ`)e

−zM(µ`)
]

with

A(µ`) =
3

2zT

(
1 +

1

2πzT

)(
1− i

µ`

πT

)
and M(µ`) = 2πT + 2iµ`.

• We note that the real and imaginary parts of Cfree(z, T, µ`) are even and odd
functions of µ` respectively. Since the QCD ground state is symmetric under
µ` → −µ`, ImCfree(z, T, µ`) must vanish identically.
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Screening Mass Taylor Coefficients from Correlator Fits
• The free theory is the T = ∞ limit of the interacting theory. For T < ∞, we
make the following ansatz:

C(z, T, µ`) = Re
[
A(T, µ`)e

−zM(T,µ`)
]

= e−zMR

[
AR cos (zMI) +AI sin (zMI)

]
• AR, AI ,MR andMI are functions of T and µ`. Taylor-expanding the correlator
in µ` yields simple quadratic and quartic polynomials for Γ(ẑ) and Σ(ẑ):

Γ(ẑ) ≡
C(2)(z, T, 0)

C(z, T, 0)
= α2ẑ

2 + α1ẑ + α0

Σ(ẑ) ≡
C(4)(z, T, 0)

C(z, T, 0)
= β4ẑ

4 + β3ẑ
3 + β2ẑ

2 + β1ẑ + β0

• The lowest-order screening mass corrections can be extracted from the polyno-
mial coefficients (M̂ ≡M/T ) [R. Thakkar & PH, JHEP 07, 171 (2023)]:

M̂ ′I(T, 0) ≡
dM̂I

dµ̂`

∣∣∣∣
µ`=0

= (−α2)1/2 = β
1/4
4

M̂ ′′R(T, 0) ≡
d2M̂R)

dµ̂2
`

∣∣∣∣
µ`=0

=
1

4

(
2α1 −

β3

α2

)
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Setup of the Calculation

• Our calculations were done using Nf = 2 + 1 flavors of Highly Improved Stag-
gered Quarks (HISQ) and a Symanzik-improved Wilson gauge action.

• The free theory calculation was done on an 803 × 8 lattice, while the finite
temperature calculations were done using 643 × 8 lattices, with an additional
ensemble of 323×8 at one of the temperatures to check for finite volume effects:

β T [GeV] Nσ ams configurations
9.360 2.24 64 0.003691 6000
9.670 2.90 64 0.002798 6000

32 0.002798 12700

• The strange quark mass was chosen to lie on the LCP, and ml = ms/20

throughout.

• The correlator-like operators were calculated using 8 point sources per config-
uration placed at ni = 0 or Nσ/2 for i ∈ {x, y, z} keeping nt = 0.

• The trace-like operators were estimated stochastically using 1000 Gaussian
noise vectors per configuration.
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Γ(ẑ) and Σ(ẑ) for finite temperature
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• We indeed observe polynomial-like behavior for Γ(ẑ) and Σ(ẑ). However, our
results are very different from the free theory even at these high temperatures.

• The difference is around 30% for Γ(ẑ) and around 45% in the case of Σ(ẑ).
Caveat: Results not continuum-extrapolated.
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Fits to Γ/ẑ2 and Σ/ẑ4
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• Approach to the asymptotic limit non-monotonic unlike in the free theory.
Hence, the coefficients α1 and β3 have opposite signs to the free theory.

• The extrema ẑΓ and ẑΣ can be identified from the fit ansatz as

Γ

ẑ2
= −|α2| −

|α1|
ẑ

+
α0

ẑ2
,

Σ

ẑ4
= β4 −

|β3|
ẑ

+
β2

ẑ2
,

ẑΓ = −2
α0

α1
, ẑΣ = −2

β2

β3

• ẑΓ and ẑΣ determined using spline fits and lowest-order coefficients α0 and β2

re-expressed in terms of ẑΓ and ẑΣ to reduce the number of fit coefficients.
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Fits to Γ/ẑ2 and Σ/ẑ4
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• Fit Γ/ẑ2 and Σ/ẑ4 in a window [ẑmin, ẑmax] and look for a plateau while varying
ẑmin (ẑmax = 3.25 kept fixed).

• Good results for Γ/ẑ2. Results for Σ/ẑ4 need more work!
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Final Results

Temperature ẑΓ α1 ẑΣ β3

2.24 GeV 2.269(23) -1.955(57) 2.860(50) 10.091(126)
2.90 GeV 2.500(16) -2.175(87) 3.125(25) 10.667(232)
Free theory 4/π ≈ 1.273 −32/π ≈ −10.186

• As noted previously, α1 and β3 differ in sign from the free theory.

• Expand M̂R and M̂I in a Taylor series in µ` as:

M̂R(T, µ`) = M̂R(0) +
1

2
M̂ ′′R(0)µ2

` +
1

24
M̂ ′′′′(0)µ4

` . . . ,

M̂I(T, µ`) = M̂ ′I(0)µ` +
1

6
M̂ ′′′I (0)µ3

` + . . .

• The biggest uncertainty in the determination of M ′I(0) and M ′′R(0) is due to
the uncertainties in β2 and β3.

Temperature M̂R(µ̂` = 0) M̂ ′′R(µ̂` = 0) M̂ ′I(µ̂` = 0)

2.24 GeV 6.337(1) 0.263(169) 1.426(5)
2.90 GeV 6.352(1) 0.172(328) 1.455(6)
Free theory 2π ≈ 6.283 0 2
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Conclusions
• In this talk, we presented a new way of calculating the pion screening mass at
finite density.

• Our approach is based on a Taylor expansion of the free theory expression for
the pion correlator at finite µ`. Hence we expect our approach to be valid at
high temperatures.

• As a first check of our formalism, we calculated up to the fourth derivative of
the free theory pion screening correlator on an 803 × 8 lattice and compared
our results with the known exact expressions.

• We then applied the same formalism to two temperatures viz. T = 2.24 GeV
and T = 2.90 GeV.

• Although the correlator ratios showed the expected polynomial-like behavior,
the non-monotonic nature of the ratios Γ(ẑ) and Σ(ẑ) and the resulting uncer-
tainties in the fit coefficients led to significant errors for M̂ ′′R(0) and M̂ ′I(0).

• However, our results seemed to indicate a positive value for M̂ ′′R(0) at these
temperatures. Both M̂ ′′R(0) as well as M̂ ′I(0) were also found to be very different
from the free theory values.
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