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Abstract
In this study we present lattice results on the QCD β-function in the presence of quark masses. The β-function is calculated to three loops in perturbation theory and for improved lattice
actions; it is extracted from the renormalization of the coupling constant Zg. The background field method is used to compute Zg, where it is simply related to the background gluon field
renormalization constant ZA. We focus on the quark mass effects in the background gluon propagator; the dependence of the QCD β-function on the number of colors Nc, the number of
fermionic flavors Nf and the quark masses, is shown explicitly. The perturbative results of the QCD β-function will be applied to the precise determination of the strong coupling constant,
calculated by Monte Carlo simulations removing the mass effects from the nonperturbative Green’s functions.

Introduction - Motivation
The renormalized β-function describes the dependence of the renormalized coupling constant g on the scale inherent in the renormalization scheme [1] (chosen in this work to be the MS
scheme). It encodes the underlying dynamics of QCD from low to high momentum regions. Nonperturbative estimations of the strong coupling α, in several renormalization schemes, through
numerical simulations of the corresponding lattice theories, are being studied by a number of groups at present (See Refs. [2, 3] and references therein).
The three-loop bare QCD β-function [4] can be extracted from the two-loop calculation of the renormalization factor Zg, which relates the bare running coupling α0 to the MS-renormalized
running coupling αMS (µ̄ is the MS renormalization scale and a is the lattice spacing) through:

α0 = Z2
g(g0, aµ̄)× αMS (1)

The inclusion of the quark masses makes this calculation even more complicated [5]. Note that we are interested in the discretization errors proportional to the quark mass (O(am) effects) on
the β-function. For simplicity of notation, we denote all flavor masses bym; the case of different flavor masses can be trivially recovered from our results. This new direction is very important
due to the fact that the O(am) effects will be removed from the nonperturbative Green’s functions entering the strong coupling, allowing for a more precise determination. Removing O(am)
effects will improve importantly any quantity that is calculated using Wilson-type fermions [6].

Computational setup and methods used to calculate Zg
The renormalized β-function and the bare β-function on the lattice (βL(g0)) are defined:

β(gMS) = µ̄
dgMS

dµ̄

∣∣∣
a,g0
, βL(g0) = −adg0

da

∣∣∣
µ̄,gMS

(2)

• In the asymptotic limit, one can write the expansion of Eq. (2) in powers of g0:

βL(g0) = −b0 g30 − b1 g
5
0 − bL2 g

7
0 − ..., β(gMS) = −b0 g3MS

− b1 g
5
MS

− b2 g
7
MS

+ ...(3)

The coefficients b0, b1 are well-known universal constants (regularization independent) for
the massless case; bLi (i ≥ 2) (regularization dependent) must be calculated perturba-
tively. βL(g0) and β(gMS) can be related using the renormalization function Zg, that is:

βL(g0) =

(
1− g20

∂ lnZ2
g

∂g20

)−1

Zg β(Z
−1
g g0) (4)

•We employ the clover action for fermions and the Symanzik improved action for gluons.

•The most convenient and economical way to proceed with the calculation of Zg(g0, aµ̄)
is to use the Background Field (BF ) technique [7, 8], in which the following relation is
valid.

ZA(g0, aµ̄)Z
2
g(g0, aµ̄) = 1 (5)

where ZA is the BF renormalization function. In the lattice version of the BF technique,
the link variable takes the form: Uµ(x) = eiag0Qµ(x) · eiaAµ(x) (Qµ: quantum field, Aµ:
background field). In this framework, instead of calculating Zg, it suffices to compute
ZA. For the above lattice calculation, we consider the 2-point BF 1PI Green’s function
⟨Aµ(x)Aν(y)⟩; we focus on the quark mass effects O(am).

One-loop Results
•The mass effects, which contribute to the 2-point Green’s function ⟨Aµ(x)Aν(y)⟩, are
associated with the Feynman diagrams with at least one fermion line. At one-loop order
⟨Aµ(x)Aν(y)⟩1−loop is the sum of these two Feynman diagrams:

•The one-loop result of the 2-pt lattice Green’s function is:

⟨Aα
µA

β
ν⟩1−loop = δαβNf

(
δµνq

2 − qνqµ
){
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)
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[
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(
m2

q2

)]}
(6)
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•We define the BF coupling to one-loop order as (for csw = 1 +O(g20)):

g2BF (q,m) = g20+g
4
0

{
F1(aq)+F2

(
m2

q2

)
+am

[
F3(aq)+F4

(
m2

q2

)]}∣∣∣
csw=1

+O(g60) (7)

g2BF (q,m) can be expressed in terms of the renormalized coupling gMS through ZL,MS
g

where g2
MS

= ZL,MS
g g20, ZL,MS

g = 1 − g20
(
b log

(
a2µ̄2

)
− am bg

)
+ O(g40). It easy to

show that in order to remove the unwanted lattice contributions (log(a) and (am)) the
coefficients b and bg must be: b = − 1

24π2
, bg = 0.01200 (8)

Large-mass expansion of the background field coupling

At one loop order, expressing g2BF (q,m) in terms of renormalized quantities (gMS, mMS =
m
(
1− 1

2am
)
and taking the limit z → ∞ (z = m2

MS
/q2) we get:

lim
z→∞

g2BF (q,mMS) = g2
MS

+ g4
MS

(
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1
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MS
/µ̄2
))

+O(a2, g6
MS
) (9)

Eq. (9) shows the logarithmic mass dependence of the heavy quarks in the continuum limit.

Two-loop Calculations
•The calculation of the two-loop Feynman diagrams is currently underway.

•The two-loop result of the 2-pt lattice Green’s function is the sum of the following twenty
Feynman diagrams.

• Since we are interested in the O(am) corrections, we use the relation for the tree-

level fermion propagator in momentum space: ⟨ψψ̄⟩ = −i /q◦+M(q,m)

q◦
2
+M(q,m)2

, where: /q
◦
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1
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•One main difficulty in this computation, as compared to the O((am)0) calculation, stems
from the fact that the fermion propagator now contains contributions of O(q−2); this
amplifies the presence of potential IR divergences, which must be carefully addressed.
Also, the sheer number of terms which must be integrated over the two loop momenta
is of the order of ∼ 109; this has necessitated the creation of special-purpose integration
routines, in order to overcome the severe contraints on CPU and memory.

Acknowledgements
This work is funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation
Foundation (Project: EXCELLENCE/0421/0025). We thank Dr. Mattia Dalla Brida for fruitful discussions and helpful comments.

References
[1] M. Luscher and P. Weisz, Nucl. Phys. B 452 (1995), 234-260.

[2] M. Dalla Brida, Eur. Phys. J. A 57 (2021) no.2, 66.

[3] L. Del Debbio and A. Ramos, Phys. Rep. 920 (2021), 1-71.

[4] A. Bode and H. Panagopoulos, Nucl. Phys. B 625 (2002), 198-210.

[5] D. D. Dietrich, Phys. Rev. D 80 (2009), 065032.

[6] M. Dalla Brida et al. [ALPHA], Eur. Phys. J. C 82 (2022) no.12, 1092.

[7] R. K. Ellis and G. Martinelli, Nucl. Phys. B 235 (1984), 93-114.

[8] M. Luscher, S. Sint, R. Sommer and P. Weisz, Nucl. Phys. B 478 (1996), 365-400.

[9] M. Luscher and P. Weisz, Nucl. Phys. B 452 (1995), 213-233.


