Lattice construction of mixed 't Hooft anomaly with higher form symmetry

Motokazu Abe (Kyushu. U in Japan) Lattice 2023 @ Fermilab 2023/07/31~08/04

Topology of SU(N) lattice gauge theories coupled with Z_N 2-form gauge fields M. Abe, O. Morikawa, S. Onoda, H. Suzuki and Y. Tanizaki arXiv:2303.10977[hep-th] Fractional topological charge in lattice Abelian gauge theory M. Abe, O. Morikawa and H. Suzuki PTEP 2023 (2023) 2, 023B03 [arXiv:2210.12967[hep-th]]

Symmetry and Anomaly I

- Classical Theory : Conservation low Symmetry (Noether Theorem)
- Quantum Theory: The conservation low may be broken (Anomaly).

Focus on the Partition function

$$Z[A] = \int [\mathcal{D}(\text{field})] \ e^{S[\text{field},A]}$$

> How to distinguish the anomaly : Whether the Z is invariant or not under a transformation $Z' \stackrel{?}{=} Z$

$$\rightarrow Z'[A + \partial \theta] = \int [\mathcal{D}(\text{field})] \ e^{S[\text{field}, A + \partial \theta]}$$

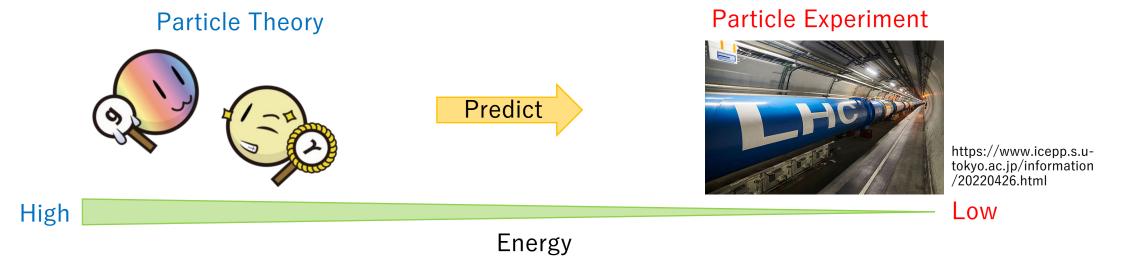
$$= \underbrace{e^{\mathcal{A}[\theta, A]}}_{\text{'t Hooft anomaly}} \underbrace{\int [\mathcal{D}(\text{field})] \ e^{S[\text{field}, A]}}_{=Z}$$

31/07/23

Lattice 2023

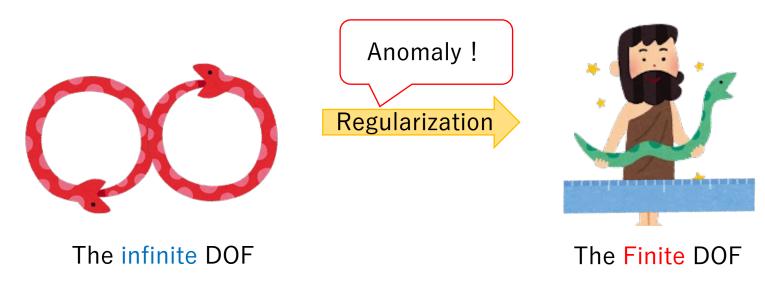
Symmetry and Anomaly II

- > We can predict low energy dynamics of the gauge theory.
 - ※Gauge theory : Theory which describes the Standard Model of particles
- ✓ e. g., we decided the theory for the strong interaction is the SU(3) gauge theory because the theory and the experiment are well matched.



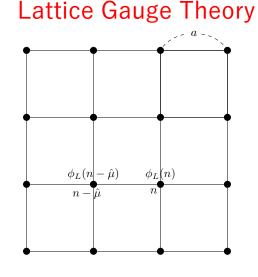
Anomaly and Quantum Field Theory

- The anomaly is a peculiar phenomenon in quantum field theory (QFT).
 - > QFT has the infinite degree of freedom.
 - > To define QFT correctly, we let the infinite degree be finite (Regularization).
 - > This regularization breaks the symmetry (Anomaly).



Recent Developments in Anomalies

- Recently, Gaiotto et al. has expanded the concept of symmetry. : Higher Form Symmetry (Gaiotto, Kapustin, Seiberg, Willett, arXiv:1412.5148[hep-th])
 - By anomalies with higher form (and discrete) symmetries, the low energy dynamics of gauge theories has been discussed. (Gaiotto, Kapustin, Komargodski, Seiberg, arXiv:1703.00501)
 - > Many new anomalies have been discovered and related studies has been done.
 - ✓ Yamaguchi, arXiv:1811.09390[hep-th]
 - ✓ Hidaka, Hirono, Nitta, Tanizaki, Yokokura, arXiv:1903.06389[hep-th]
 - ✓ Honda, Tanizaki, arXiv:2009.10183[hep-th]
 - ✓ etc.
- ☆Motivation : Understand these anomalies in the lattice field theory where we treat the regularization well.



Anomaly of the SU(N) gauge theory with θ term

• The SU(N) gauge theory with the θ term has the time reversal (T) symmetry at $\theta = \pi$.

$$Z = \int \mathcal{D}a \ e^{S[a]} = \int \mathcal{D}a \ e^{S_{SU(N)}[a]} e^{i\theta Q[a]}, \quad Q \in \mathbb{Z}$$

$$\xrightarrow{\mathcal{D}=\pi, \ \mathcal{T} \text{ trans.}} Z' = \int \mathcal{D}a \ e^{S_{SU(N)}[a]} e^{i\pi(-Q[a])} = \int \mathcal{D}a \ e^{S_{SU(N)}[a]} e^{i\pi(+Q[a])} \underbrace{e^{-i2\pi Q[a]}}_{-1} = Z$$

- Then, we construct the SU(N) gauge theory with the higher form symmetry $(\mathbb{Z}_N^{-1} 1 \text{form gauge} symmetry)$. This means we couple $\mathbb{Z}_N 2$ -form gauge field to the theory.
 - > The topological charge (TC) becomes fractional, so it is not invariant under the T transformation.

Important!!
$$e^{-i2\pi Q} \neq$$

> This theory at $\theta = \pi$ has the mixed anomaly between the \mathbb{Z}_N 1-form gauge and \mathcal{T} symmetry.

Topological Charge on the Lattice

• How to calculate the topological charge Q,

$$Q = -\frac{1}{24\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \int_{f(n,\mu)} \mathrm{d}^3 x \operatorname{tr} \left[(\tilde{v}_{n,\mu}^{-1} \partial_\nu \tilde{v}_{n,\mu}) (\tilde{v}_{n,\mu}^{-1} \partial_\rho \tilde{v}_{n,\mu}) (\tilde{v}_{n,\mu}^{-1} \partial_\sigma \tilde{v}_{n,\mu}) \right] - \frac{1}{8\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \int_{p(n,\mu,\nu)} \mathrm{d}^2 x \operatorname{tr} \left[(\tilde{v}_{n,\mu} \partial_\rho \tilde{v}_{n,\mu}^{-1}) (\tilde{v}_{n-\hat{\mu},\nu}^{-1} \partial_\sigma \tilde{v}_{n-\hat{\mu},\nu}) \right].$$

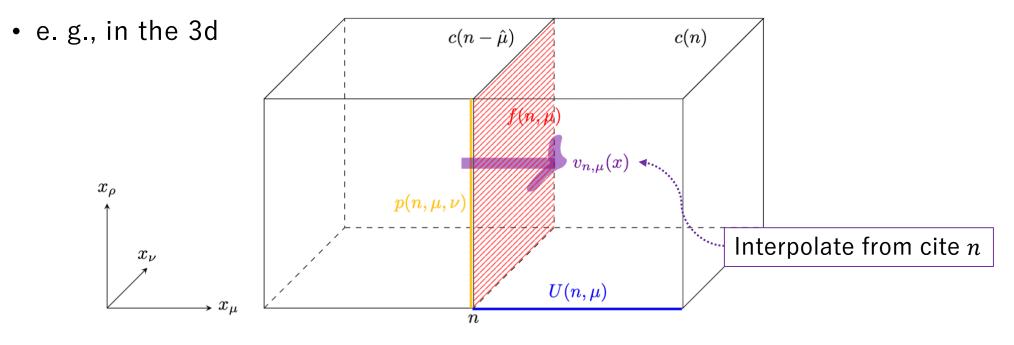
 $\succ v_{n,\mu}(x)$ is the gauge translation function (transition function).

- On the lattice, topological values are ill-defined.
 - Restricting the size of plaquette (Admissibility condition), Lüscher constructed integer TC on the lattice (Lüscher, Commun. Math. Phys. 85 (1982)).
 - We aim to construct the fractional TC on the SU(N) lattice by extended the Lüscher's topological charge.
 - ✓ Itou, arXiv:1811.05708[hep-th]
 - ✓ Anosova, Gattringer, Göschl, Sulejmanpasic, Törek, arXiv:1912.11685 [hep-lat]

Lattice 2023

Transition Function on the Lattice

- The manifold is divided by hyper cubes c(n).
- Fiber bundle describes the gauge theory by transition function for gauge transformation.



Transition Function for Fractional TC

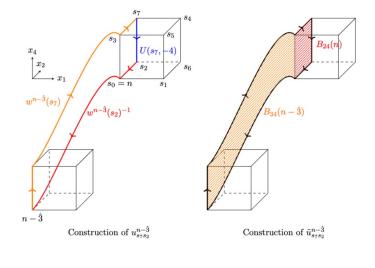
• Coupling \mathbb{Z}_N 2-form field to the theory, the structure of fiber bundle becomes rich. $v_{n-\hat{\nu},\mu}(n)v_{n,\nu}(n)v_{n,\mu}(n)^{-1}v_{n-\hat{\mu},\nu}(n)^{-1} = 1.$

 $\tilde{v}_{n-\hat{\nu},\mu}(n)\tilde{v}_{n,\nu}(n)\tilde{v}_{n,\mu}(n)^{-1}\tilde{v}_{n-\hat{\mu},\nu}(n)^{-1} = e^{\frac{2\pi i}{N}B_{\mu\nu}(n-\hat{\mu}-\hat{\nu})}\mathbb{1}.$

- We find that the \mathbb{Z}_N 1-form gauge invariance plays the center role.
- > Admissibility condition $\|1 - \tilde{U}_{\mu\nu}(n)\| < \varepsilon$

Components of transition function

 $\tilde{U}_{\mu\nu}(n) \equiv e^{-\frac{2\pi i}{N}B_{\mu\nu}(n)} \times U(n,\mu)U(n+\hat{\mu},\nu)U(n+\hat{\nu},\mu)^{-1}U(n,\nu)^{-1}$



Lattice 2023

Fractional TC

• By the \mathbb{Z}_N 1-form invariant transition function, we calculate TC.

$$z_{\mu\nu} = \sum_{p \in (T^2)_{\mu\nu}} B_p \mod N.$$
$$Q_{\text{top}} = -\frac{1}{N} \int_{T^4} \frac{1}{2} P_2(B_p) \mod 1 \in -\frac{1}{N} \frac{\varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma}}{8} + \mathbb{Z}$$

 $P_2(B_p) = B_p \cup B_p + B_p \cup_1 \mathrm{d}B_p$

• In the U(1) lattice gauge theory, we make sure that (cf. Abe, Morikawa, Suzuki, arXiv:2210.12967[hep-th])

$$Q_{\text{top}} = \frac{1}{32\pi^2} \sum_{n \in \Lambda} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \tilde{F}_{\mu\nu}(n) \tilde{F}_{\rho\sigma}(n+\hat{\mu}+\hat{\nu}) \in \frac{1}{N^2} \mathbb{Z} + \mathbb{Z}$$

Lattice 2023

Anomaly I

• The action on the lattice is

$$S[U_l, B_p] \equiv -S_W[U_l, B_p] + i\theta Q_{\text{top}}[U_l, B_p]$$

• The topological charge is

$$Q_{\text{top}} = -\frac{1}{N} \int_{T^4} \frac{1}{2} P_2(B_p) + \mathbb{Z} \equiv \text{frac}[B_p] + \text{int}[U_l, B_p]$$

 \diamond Invariant under the \mathbb{Z}_N one-form gauge transformation

 \diamond Odd under the T transformation on the lattice,

$$Q_{\rm top} \xrightarrow{\mathcal{T}} -Q_{\rm top}$$

> We discuss the anomaly at $\theta = \pi$ between the \mathbb{Z}_N 1-form gauge and \mathcal{T} symmetry.

Anomaly II

• At
$$\theta = \pi$$
, the partition function is, under \mathcal{T} transformation,

$$Z[B_p] = \int \mathcal{D}U_l \ e^{S[U_l, B_p]} = \int \mathcal{D}U_l \ e^{-S_W[U_l, B_p]} e^{i\theta Q_{top}[U_l, B_p]}$$

$$\xrightarrow{\theta = \pi, \ \mathcal{T} \text{ trans.}} Z'[B_p] = \int \mathcal{D}U_l \ e^{-S_W[U_l, B_p]} e^{i\pi(-Q_{top}[U_l, B_p])} = \int \mathcal{D}U_l \ e^{-S_W[U_l, B_p]} e^{i\pi Q_{top}[U_l, B_p]} \underbrace{e^{-i2\pi Q_{top}[U_l, B_p]}}_{=e^{-i2\pi \operatorname{int}[U_l, B_p]} e^{-i2\pi \operatorname{frac}[B_p]}}_{=Z}$$

• This means that there is the anomaly at $\theta = \pi$ between the \mathbb{Z}_N 1-form gauge and \mathcal{T} symmetry.

Conclusion and Future Work

 \Leftrightarrow Conclusion

- We construct the fractional topological charge on the SU(N) gauge theory.
- By this topological charge, we construct the anomaly at $\theta = \pi$ between the \mathbb{Z}_N 1-form gauge and \mathcal{T} symmetry.

 \Leftrightarrow Future work

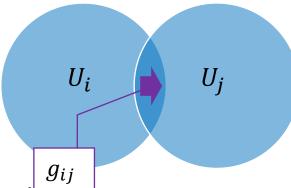
- Construct the magnetic operator under the admissibility condition on the lattice

 ✓ cf. Abe, Morikawa, Onoda, Suzuki, Tanizaki, arXiv:2304.14815 [hep-lat]
- Construct non-invertible symmetries on the lattice

U(1) Part

Fiber Bundle and Fractional Topological Charge

• We construct the fiber bundle which makes the topological charge fractional. ('t Hooft, Nucl. Phys. B 153 (1979), van Baal, Commun. Math. Phys. 85 (1982))



cocycle condition: $g_{ij}g_{jk}g_{ki} = \exp\left(\frac{2\pi i}{N}n_{ijk}\right)$

(non-trivial transition function) $\sim \omega_{\mu} \times (SU(N) \text{ transition function})$

☆ We aim to construct the fractional topological charge on the lattice.
factor of fractionality
> We utilize the formulation for the interview. theory.

(Lüscher, Commun. Math. Phys. 85 (1982))

 \succ We pay attention to the \mathbb{Z}_N one form invariance.

New Transition Function on the Lattice

transition function with the factor of fractionality in the continuum theory

(non-trivial transition function) ~ $\omega_{\mu} \times (SU(N) \text{ transition function})$

 x_{ν}

 $f(n,\mu)$

16/13

n

 $c(n-\hat{\mu})$

• We construct the transition function $v_{n,\mu}$ at $x \in f(n,\mu)$ in the $U(1)/\mathbb{Z}_q$ lattice gauge theory.

 $\succ \omega_{\mu}$ is the factor of fractionality on the lattice.

$$v_{n,\mu}(x) = \omega_{\mu}(x)\check{v}_{n,\mu}(x)$$

$$\omega_{\mu}(x) \equiv \begin{cases} \exp\left(\frac{\pi i}{q} \sum_{\nu \neq \mu} \frac{z_{\mu\nu} x_{\nu}}{L}\right) & \text{for } x_{\mu} = 0 \mod L \\ 1 & \text{otherwise} \end{cases}$$

$$\succ z_{\mu\nu} \in \mathbb{Z}$$
 and $z_{\mu\nu} = -z_{\nu\mu}$

Topological Charge on the Lattice

• We calculate the topological charge by the new transition function.

$$Q = -\frac{1}{8\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \int_{p(n,\mu,\nu)} d^2 x \left[v_{n,\mu}(x) \partial_{\rho} v_{n,\mu}(x)^{-1} \right] \left[v_{n-\hat{\mu},\nu}(x)^{-1} \partial_{\sigma} v_{n-\hat{\mu},\nu}(x) \right]$$

• By the new transition function $v_{n,\mu}(x) = \omega_{\mu}(x)\check{v}_{n,\mu}(x)$ $Q = \frac{1}{8q^2} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma} + \frac{1}{8\pi q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} \sum_{n\mu=0} \check{F}_{\rho\sigma}(n)$ Fractional!! $+ \frac{1}{32\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \check{F}_{\mu\nu}(n) \check{F}_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})$ integer

Anomaly

The action on the lattice is

$$S \equiv \underbrace{\frac{1}{4g_0^2} \sum_{n} \sum_{\mu,\nu} \check{F}_{\mu\nu}(n) \check{F}_{\mu\nu}(n) + S_{\text{matter}} - \underbrace{iq\theta Q}_{\text{By the Witten effect(Honda, Tanizaki, arXiv:2009.10183)}}$$

- The topological charge is $\frac{qQ}{qQ} = \frac{1}{8q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma} + \mathbb{Z} \equiv \operatorname{frac}[z] + \operatorname{int}[a,z]$
 - \diamond Invariant under the \mathbb{Z}_q one-form gauge transformation $\overset{\sim}{\sigma}$
 - \diamond Odd under the \mathcal{T} transformation on the lattice, $qQ \stackrel{\mathcal{T}}{\rightarrow} -qQ$
 - \succ We discuss the anomaly at $\theta = \pi$ between the \mathbb{Z}_q -one form gauge and the \mathcal{T} symmetry.

Anomaly

• Adding the local counter term, at $\theta = \pi$ the partition function is, under T transformation, $Z[z] = \int \mathcal{D}a \ e^{S[a,z]} = \int \mathcal{D}a \ e^{S_0[a,z]} e^{i\theta q Q[a,z]}$ $\xrightarrow[\theta=\pi, \mathcal{T} \text{ trans.}]{\mathcal{T}} Z' = \int \mathcal{D}a \ e^{\mathbf{S}_0[a,z]} e^{i\pi(-q\mathbf{Q}[a,z])} = \int \mathcal{D}a \ e^{\mathbf{S}_0[a,z]} e^{i\pi q\mathbf{Q}[a,z]} \underbrace{e^{-i2\pi q\mathbf{Q}[a,z]}}_{=e^{-i2\pi \text{int}[a,z]}e^{-i2\pi \text{frac}[z]}}$ $=e^{-i2\pi \operatorname{frac}[z]} \underbrace{\int \mathcal{D}a \ e^{S_0[a,z]} e^{i\pi q Q[a,z]}}_{\swarrow} \neq Z$ =ZFor $q \in 2\mathbb{Z}$, the anomaly exists! $\xrightarrow{}$ including counter term 31/07/23 Lattice 2023 19/13

Back Up

't Hooft Anomaly

• 't Hooft anomaly :

Couple a background gauge field A_{μ} with the preserved current j_{μ} related to the symmetry

$$Z[A_{\mu}] = \left\langle \exp\left(i\int A_{\mu}j^{\mu}\right)\right\rangle \qquad \qquad Z[A_{\mu} + \partial_{\mu}\theta] = Z[A_{\mu}] \exp(i\mathcal{A}(\theta, A_{\mu}))$$

Phase Gap

• 't Hooft anomaly matching:

The property of matching the 't Hooft anomaly calculated respectively in both UV and IR theory

Using the prediction of the low-energy physics of gauge theories

't Hooft Anomaly Matching Condition

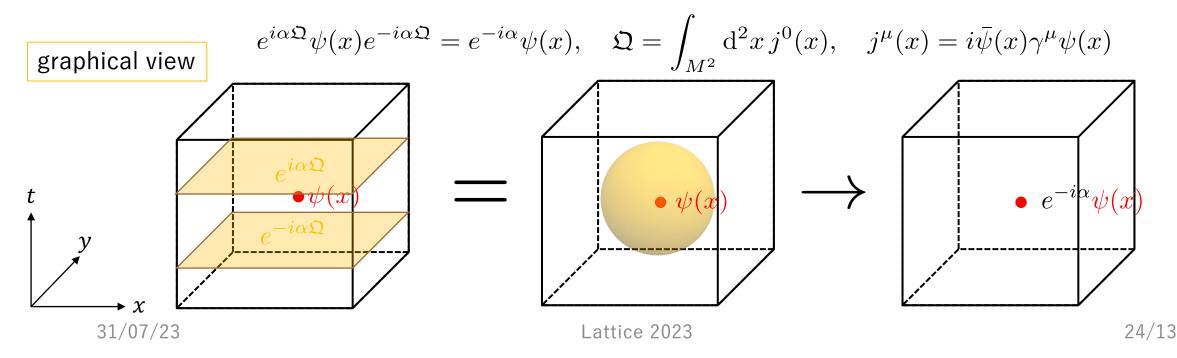
- Application example
- ✓ Restricting the low-energy effective theory of QCD, this condition requires lagrangian to have the Wess-Zumino-Witten term.
- Since a part of the background gauge field exists as the gauge field in Electro-Weak gauge theory, 't Hooft anomaly can be observed in the collapse of neutral π meson. To match the experiment with this theory, the strong field theory is detected to SU(3) gauge theory.

Topological Charge

- Topology : Same under the continuum transformation
- Normal quantum physics : Wave functions are characterized by electron's charge.
 - > There are physics which is characterized by "topological charge".
 - \checkmark e.g., superconductor, topological soliton,…

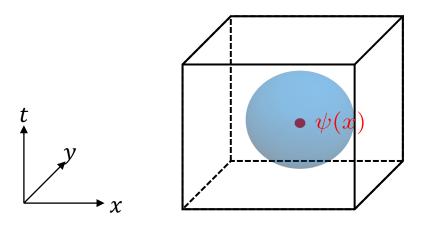
Higher Form Symmetry I

- First, we look normal symmetry (0-form symmetry)
- > (2+1)d By the field $\psi(x)$'s transformation, the charge Ω spreads in 2d.

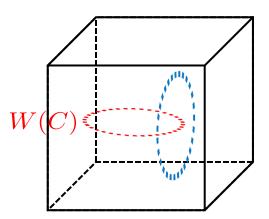


Higher Form Symmetry II

- Normal symmetry (0-form symmetry) : transform the point $\psi(x)$ \checkmark e.g., global U(1) symmetry $\psi(x) \rightarrow e^{i\alpha}\psi(x)$
- Extend the point to 2d, 3d,... objects
 - zero form symmetry
 - > transform point $\psi(x)$



one form symmetry
 > transform loop W(C)

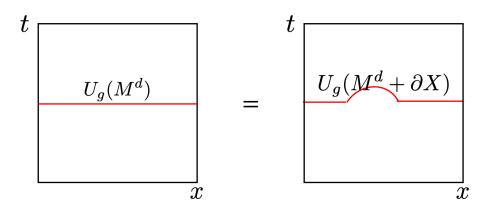


31/07/23

Lattice 2023

Symmetry Operator's Topological Invariance

• Infinitisimal transformation of M^d ,



$$\delta Q = \int_{M^d + \delta M^d} j - \int_{M^d} j = \int_{\partial X^d} j = \int_{X^d} dj = 0$$

\mathbb{Z}_N one-form gauge symmetry

\mathbb{Z}_N zero-form gauge symmetry	\mathbb{Z}_N one-form gauge symmetry
• $U(1)$ gauge field A_{μ} and scalar field ϕ make a pair (A_{μ}, ϕ) and construct \mathbb{Z}_N one-form gauge field.	• $U(1)$ two-form gauge field $B_{\mu\nu}$ and $U(1)$ gauge field C_{μ} make a pair $(B_{\mu\nu}, C_{\mu})$ and construct \mathbb{Z}_N two-form gauge field.
• Constraint $NA_{\mu}=\partial_{\mu}\phi$	• Constraint $NB_{\mu\nu} = \partial_{\mu}C_{\nu}$ Written like $NB = dC$
• \mathbb{Z}_N zero-form gauge trans	• \mathbb{Z}_N one-form gauge trans
$\phi \mapsto \phi + N\lambda$ $A_{\mu} \mapsto A_{\mu} + \partial_{\mu}\lambda$	$C_{\mu} \mapsto C_{\mu} + N\lambda_{\mu}$ $B_{\mu\nu} \mapsto B_{\mu\nu} + \partial_{\mu}\lambda_{\nu}$

\mathbb{Z}_N Zero-form Gauge Symmetry

• Introducing the U(1) gauge field A_{μ} ,

$$S = \int \mathrm{d}^4 x \, D_\mu H^\dagger D_\mu H + \cdots, \quad D_\mu H = \partial_\mu H - i N A_\mu H$$

• Condense the Higgs H. ϕ is a scalar field.

$$H = h e^{i\phi}, \quad \phi \sim \phi + 2\pi$$

$$S = \int \mathrm{d}^4 x \, h^2 (\partial_\mu \phi - N A_\mu)^2 + \cdots$$

• VEV $h \rightarrow \infty$, we get the constraint,

$$\partial_{\mu}\phi - NA_{\mu} = 0$$

\mathbb{Z}_N Zero-form Gauge Symmetry

- Constraint: $\partial_{\mu}\phi = NA_{\mu}$
- If N = 1, A_{μ} is pure gauge by the constraint, U(1) symmetry is broken completely. On the other hand, if N > 1, \mathbb{Z}_N symmetry is remained. Wilson loop is

$$W^{N} = \left[\exp\left(i\int A_{\mu}\right)\right]^{N} = \exp\left(i\int \partial_{\mu}\phi\right) = 1$$

- By this constraint, a pair, (A_{μ}, ϕ) , U(1) gauge field A_{μ} and a scalar field ϕ , constructs \mathbb{Z}_N one-form gauge field.
- This pair, (A_{μ}, ϕ) , has the \mathbb{Z}_N zero-form gauge symmetry, and the transformation is $\phi \mapsto \phi + N\lambda$

$$A_{\mu} \mapsto A_{\mu} + \partial_{\mu} \lambda$$

Gaiotto, Kapustin, Komargodski, Seiberg, arXiv:1703.00501

\mathbb{Z}_N One-form Gauge Symmetry

- An example of higher form symmetries, \mathbb{Z}_N one-form gauge symmetry, is not familiar.
- \geq Rough method of making \mathbb{Z}_N one-form gauge symmetry
- ✓ Consider \mathbb{Z}_N zero-form gauge symmetry
- ✓ Raise the rank of the derivative
- ✓ Consider \mathbb{Z}_N one-form gauge symmetry

Couple with SU(N) Gauge Theory with θ Term

• Action:
$$S = -\frac{1}{2g^2} \int \operatorname{tr}(F \wedge \star F) + \frac{\theta}{8\pi^2} \int \operatorname{tr}(F \wedge F)$$

$$S = -\frac{1}{2g^2} \int \operatorname{tr}\left[\left(\mathcal{F} - \mathbb{1}B\right) \wedge \star\left(\mathcal{F} - \mathbb{1}B\right)\right] + \frac{\theta}{8\pi^2} \int \operatorname{tr}\left[\left(\mathcal{F} - \mathbb{1}B\right) \wedge \left(\mathcal{F} - \mathbb{1}B\right)\right] + \frac{1}{2\pi} \int u \wedge \left(\operatorname{tr}\mathcal{F} - NB\right)$$

- Couple the pair, $(B_{\mu\nu}, C_{\mu})$, \mathbb{Z}_N two-form gauge field, with SU(N) gauge theory
- > Extend the SU(N) gauge theory to the U(N) gauge theory
- $\succ A$: U(N) gauge field, whose traceless part is SU(N) gauge field A.
- Eliminate the trace-part by one-form gauge symmetry,

$$\mathcal{A}\mapsto \mathcal{A}+\lambda\mathbb{1}$$

> Imposing the constraint,

$$\operatorname{tr}(\mathcal{F}) = NB$$

- > With the gauge transformation of a pair (B, C), \mathbb{Z}_N two-form gauge field, $F = \mathcal{F} \mathbb{1}B$ becomes λ gauge invariant.
- > By this F, we obtain the SU(N) gauge action coupling with the \mathbb{Z}_N two-form gauge field.

 \mathbb{Z}_N One-form Gauge Transformation $C \mapsto C + N\lambda$ $B \mapsto B + d\lambda$

Anomaly in the SU(N) Gauge Theory with θ Term

• Action : $S = -\frac{1}{2g^2} \int \operatorname{tr}(f \wedge \star f) + \frac{\theta}{8\pi^2} \int \operatorname{tr}(f \wedge f) \quad \text{time reversal sym at } \theta = 0, \pi$

➢ Replace F = F − B1, we couple Z_N two-form gauge field and SU(N) gauge theory. $S = -\frac{1}{2g^2} \int \operatorname{tr} \left[(F - \mathbb{1}B) \land (F - \mathbb{1}B) \right] + \frac{\theta}{8\pi^2} \int \operatorname{tr} \left[(F - \mathbb{1}B) \land (F - \mathbb{1}B) \right] + \frac{1}{2\pi} \int u \land (\operatorname{tr} F - NB)$ ➢ With Z_N one-form gauge sym, under T trans,

$$Z[B] \xrightarrow{\mathcal{T}} Z[B] \exp\left[i\frac{-1+N+2p}{4\pi N}\int NB \wedge NB\right] \qquad 2\pi i \times \text{(fractional)}$$

> Anomaly between \mathbb{Z}_N one-form gauge and time reversal sym.

Fiber Bundle

- The fiber bundle describes the gauge theory.
 - \succ Covering a manifold M by patches U_i , each patch has the SU(N) gauge field a_i and the matter field ϕ_i with the irreducible representation ρ .
- connected by the gauge transformation is satisfied. function ass

$$a_{j} = g_{ij}^{-1} a_{i} g_{ij} - i g_{ij}^{-1} dg_{ij}$$

$$\phi_{j} = \rho(g_{ij}^{-1}) \phi_{i}$$

$$U_{i} \qquad U_{j}$$

$$transition function g_{ij}$$

• Gauge fields at $U_{ij} = U_i \cap U_j$ are • At $U_{ijk} = U_i \cap U_j \cap U_k$, the cocycle condition

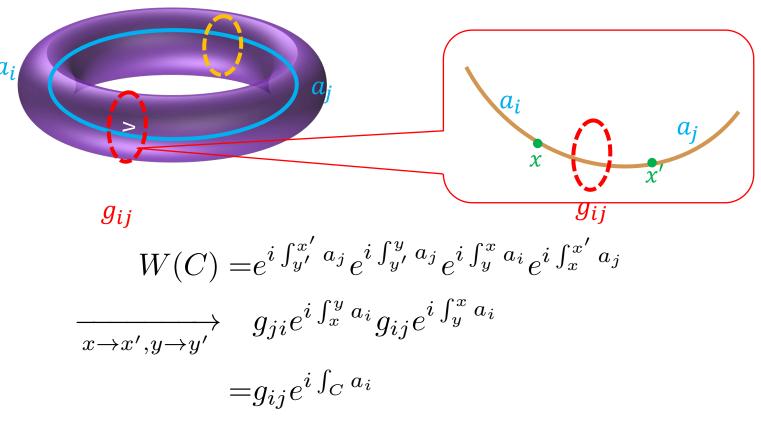
 U_i U_i U_k U_{ijk}

 $g_{ij}g_{jk}g_{ki} = 1$

Lattice 2023

Wilson Loop and Transition Function

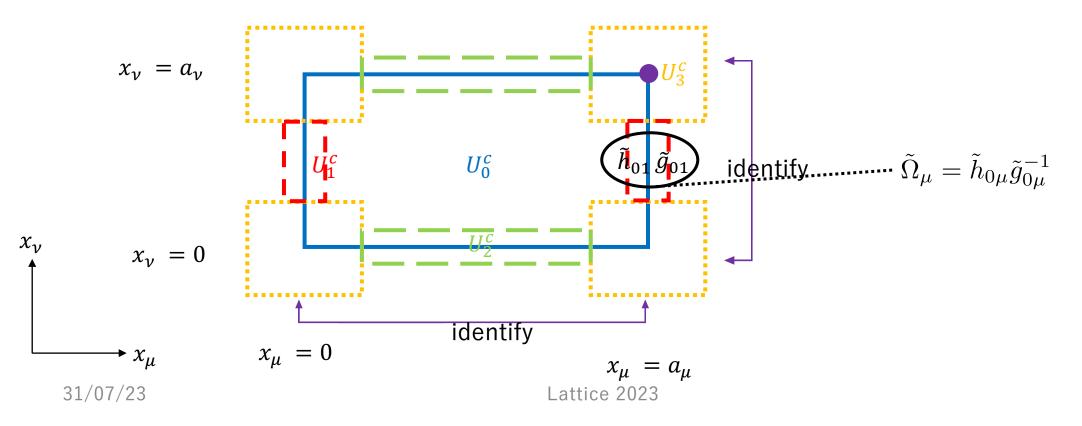
• Divided the torus into two part, $g_{ii} = 1$



Lattice 2023

Transition Function in SU(N) Gauge Theory

- Transition function is defined in nontrivial patches.
- In 2*d*, the manifold T^2 is divided by four patches



35/13

\mathbb{Z}_N One-form Gauge Sym and Fiber Bundle

When the representation ρ is adjoint, cocycle condition becomes relaxed. g_{ij}g_{jk}g_{ki} = exp (2πi/N nijk) ∈ Z_N
Here, {n_{ijk}} is mod N and antisymmetric. > {n_{ijk}} has gauge redundancy. > Under trans of transition function, g_{ij} ↦ exp (2πi/N λij) g_{ij} we want to be invariant of cocycle condition, n_{ijk} ↦ n_{ijk} + (δλ)_{ijk} (δλ)_{ijk} ≡ λ_{ij} - λ_{ik} + λ_{jk}

 \succ We call this trans \mathbb{Z}_N one-form gauge trans and $\{n_{ijk}\} \mathbb{Z}_N$ two-form gauge field.

Transition Function in SU(N) Gauge Theory

- By the transition function $\widetilde{\Omega}_{\mu},$ the cocycle condition is

$$\tilde{\Omega}_{\mu}(x_{\nu} = a_{\nu})\tilde{\Omega}_{\nu}(x_{\mu} = 0)\tilde{\Omega}_{\mu}^{-1}(x_{\nu} = 0)\tilde{\Omega}_{\nu}^{-1}(x_{\mu} = a_{\mu}) = 1$$

• To consider the fractional topological charge, we redefine the transition function Ω_{μ} . (Making $SU(N)/\mathbb{Z}_N$ bundle)

$$\Omega_{\mu} = \tilde{h}_{0\mu} \omega_{\mu} \tilde{g}_{0\mu}^{-1}$$
 factor of fractionality

$$\omega_{\mu} = \exp\left(\frac{\pi i}{N} \sum_{\nu} \frac{n_{\mu\nu} x_{\nu}}{a_{\nu}} T_{1}\right)$$
 SU(N)'s generator
axed.

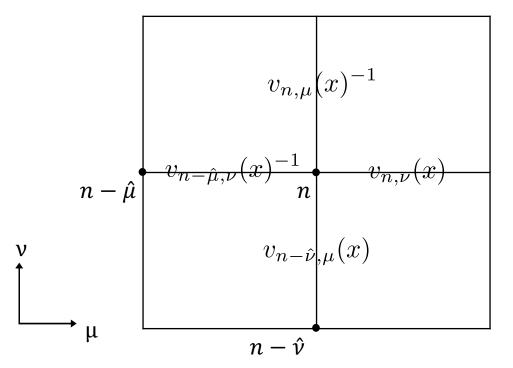
The cocycle condition is relaxed,

$$\Omega_{\mu}(x_{\nu} = a_{\nu})\Omega_{\nu}(x_{\mu} = 0)\Omega_{\mu}^{-1}(x_{\nu} = 0)\Omega_{\nu}^{-1}(x_{\mu} = a_{\mu}) = \exp\left(\frac{2\pi i}{N}n_{\mu\nu}\right)$$

Cocycle Condition on the Lattice

(new transition function) $\sim \omega_{\mu} \times (\text{normal transition function})$

• By the new transition function, the cocycle condition is



ordinary

$$\check{v}_{n-\hat{\mu},\nu}(x)\check{v}_{n,\mu}(x)\check{v}_{n,\nu}(x)^{-1}\check{v}_{n-\hat{\nu},\mu}(x)^{-1} = 1$$

new

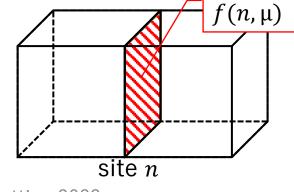
$$v_{n-\hat{\mu},\nu}(x)v_{n,\mu}(x)v_{n,\nu}(x)^{-1}v_{n-\hat{\nu},\mu}(x)^{-1} = \exp\left(\frac{2\pi i}{N}z_{\mu\nu}\right)$$

Lüscher's Idea

• Topological charge is defined by the continuum function: transition function $v_{n,\mu}$,

$$Q(v_{n,\mu}) = -\frac{1}{24\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \int_{f(n,\mu)} d^3 x \,\varepsilon_{\mu\nu\rho\sigma} \operatorname{Tr}\left((v_{n,\mu}^{-1}\partial_{\nu}v_{n,\mu})(v_{n,\mu}^{-1}\partial_{\rho}v_{n,\mu})(v_{n,\mu}^{-1}\partial_{\sigma}v_{n,\mu})\right) \\ + \frac{1}{8\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \int_{p(n,\mu,\nu)} d^2 x \,\varepsilon_{\mu\nu\rho\sigma} \operatorname{Tr}\left((v_{n,\mu}\partial_{\rho}v_{n,\mu}^{-1})(v_{n-\hat{\mu},\nu}^{-1}\partial_{\sigma}v_{n-\hat{\mu},\nu})\right)$$

• By the interpolate function: "Parallel transporter", he defined the transition function $v_{n,\mu}$ on the face $f(n,\mu)$.



Interpolate Function in SU(N) Gauge Theory

• In $x \in f(n, \mu)$,

$$\begin{aligned} f_{n,\mu}^{m}(x_{\gamma}) = &(u_{30})^{y_{\gamma}} (u_{03}^{m} u_{37}^{m} u_{72}^{m} u_{20}^{m})^{y_{\gamma}} u_{02}^{m} (u_{27}^{m})^{y_{\gamma}} \\ g_{n,\mu}^{m}(x_{\gamma}) = &(u_{51})^{y_{\gamma}} (u_{15}^{m} u_{54}^{m} u_{46}^{m} u_{61}^{m})^{y_{\gamma}} u_{16}^{m} (u_{64}^{m})^{y_{\gamma}} \\ h_{n,\mu}^{m}(x_{\gamma}) = &(u_{30})^{y_{\gamma}} (u_{03}^{m} u_{35}^{m} u_{51}^{m} u_{10}^{m})^{y_{\gamma}} u_{01}^{m} (u_{15}^{m})^{y_{\gamma}} \\ k_{n,\mu}^{m}(x_{\gamma}) = &(u_{72})^{y_{\gamma}} (u_{27}^{m} u_{74}^{m} u_{46}^{m} u_{62}^{m})^{y_{\gamma}} u_{26}^{m} (u_{64}^{m})^{y_{\gamma}} \\ k_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) = &\left[f_{n,\mu}^{m}(x_{\gamma})^{-1} \right]^{y_{\beta}} \left[f_{n,\mu}^{m}(x_{\gamma}) k_{n,\mu}^{m}(x_{\gamma}) g_{n,\mu}^{m}(x_{\gamma})^{-1} h_{n,\mu}^{m}(x_{\gamma})^{-1} \right]^{y_{\beta}} \\ & \cdot h_{n,\mu}^{m}(x_{\gamma}) \left[g_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[f_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\gamma}} \left[l_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\alpha}} \left[l_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\alpha}} \\ & \int \\ S_{n,\mu}^{m}(x_{\alpha}, x_{\beta}, x_{\gamma}) = &(u_{03}^{m})^{y_{\alpha}} \left[l_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m}(x_{\beta}, x_{\gamma}) \right]^{y_{\beta}} \\ & \int \\ S_{n,\mu}^{m}(x_{\gamma}) \left[l_{n,\mu}^{m}(x_{\gamma}) \right]^{y_{\beta}} \left[l_{n,\mu}^{m$$

40/13

*S*₁

Parallel Transporter in the Lattice U(1) Gauge Theory

• By the parallel transporter $w^m(x)$, we obtain the transition function $v_{n,\mu}$ in the continuum point x: $v_{n,\mu}(x) = w^{n-\hat{\mu}}(x)w^n(x)^{-1}$

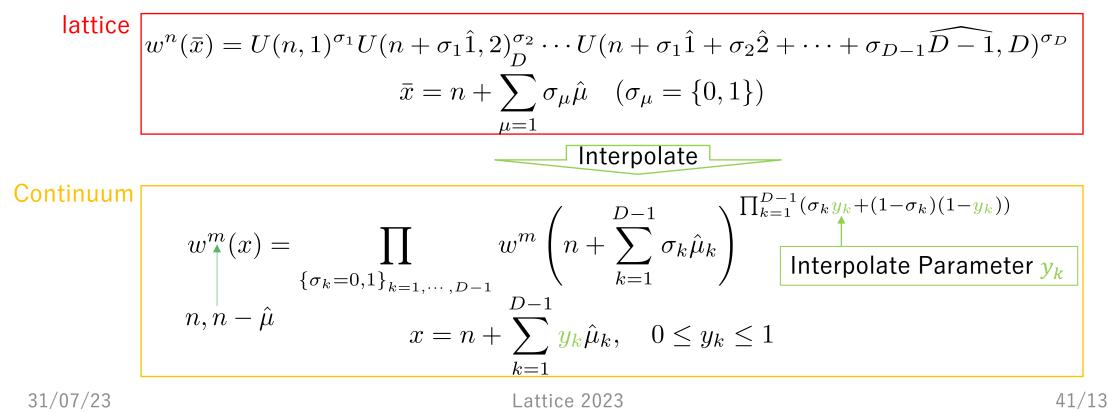
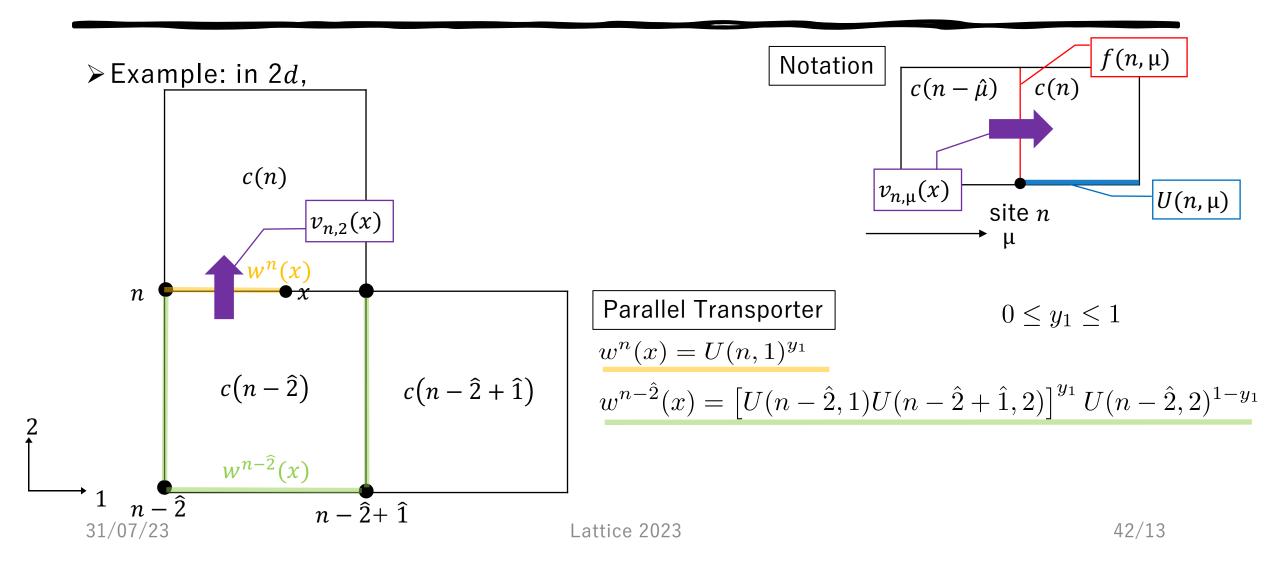


Image of Parallel Transporter



Transition Function on the Lattice in 2d

• By using the parallel transport function, the transition function is,

 $v_{n,\mu}(x) = w^{n-\hat{\mu}}(x)w^n(x)^{-1}$

 \succ Example: in 2*d*,

2

$$v_{n,2}(x) = w^{n-2}(x)w^{n}(x)^{-1}$$

$$= U(n-2,2) \left[U(n-2,1)U(n-2+1,2)U(n,1)^{-1}U(n-2,2)^{-1}\right]^{y_{1}}$$

$$= U(n-2,2) \exp\left[iy_{1}F_{12}(n-2)\right]$$

$$F_{\mu\nu}(n) = \frac{1}{i}\ln\left[U(n,\mu)U(n+\mu,\nu)U(n+\nu,\mu)^{-1}U(n,\nu)^{-1}\right]$$

$$w^{n-2}(x) = \left[U(n-2,1)U(n-2+1,2)\right]^{y_{1}}U(n-2,2)^{1-y_{1}}$$

$$n-2$$

$$n-2+1$$

$$Lattice 2023$$

$$Lattice 2023$$

$$Lattice 2023$$

Transition Function on the Lattice in 4d

> In 4d,
$$v_{n,1}(x) = U(n - \hat{1}, 1)$$

$$v_{n,2}(x) = U(n - \hat{2}, 2) \exp \left[iy_1F_{12}(n - \hat{2})\right]$$

$$\times \exp \left[iy_4F_{14}(n - \hat{1}) + iy_3y_4F_{13}(n - \hat{1} + \hat{4}) + iy_3(1 - y_4)F_{13}(n - \hat{1}) + iy_2y_3y_4F_{12}(n - \hat{1} + \hat{3} + \hat{4}) + iy_2y_3(1 - y_4)F_{12}(n - \hat{1} + \hat{3}) + iy_2(1 - y_3)y_4F_{12}(n - \hat{1} + \hat{4}) + iy_2(1 - y_3)(1 - y_4)F_{12}(n - \hat{1})\right],$$

$$v_{n,2}(x) = U(n - \hat{2}, 2) \exp \left[iy_4F_{24}(n - \hat{2}) + iy_3y_4F_{23}(n - \hat{2} + \hat{4}) + iy_3(1 - y_4)F_{23}(n - \hat{2})\right],$$

$$v_{n,3}(x) = U(n - \hat{3}, 3) \exp \left[iy_4F_{34}(n - \hat{3})\right],$$

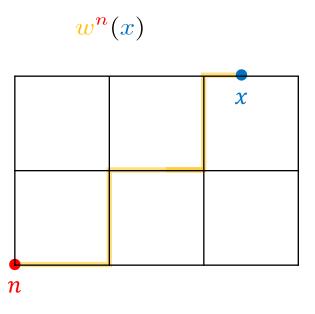
$$v_{n,4}(x) = U(n - \hat{4}, 4)$$

Field strength is

$$F_{\mu\nu}(n) = \frac{1}{i} \ln \left[U(n,\mu)U(n+\hat{\mu},\nu)U(n+\hat{\nu},\mu)^{-1}U(n,\nu)^{-1} \right]$$

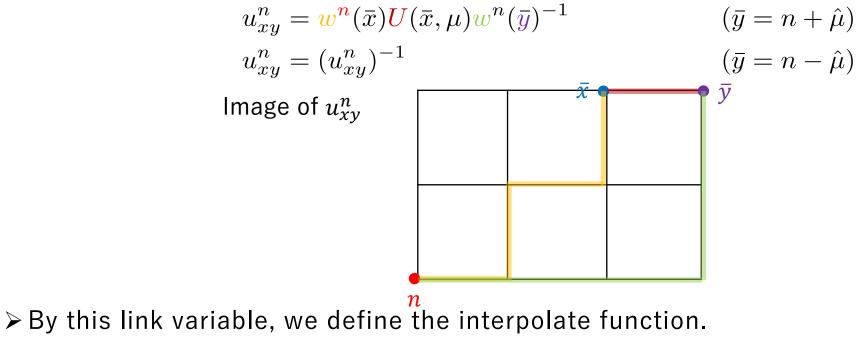
Parallel Transport Function

• Parallel transport function's image is "by the interpolate parameter y, the transition function is defined as the function on an arbitrarily point x on the link".



Link Variables

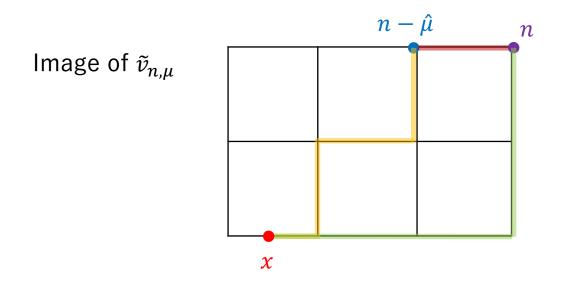
- In SU(N) gauge field, this process is very complicated.
- > By the parallel transport function, we defined the new link variable.



Transition Function

• By the interpolate function made from the new link variable, we define the transition function as continuum function on the lattice .

$$\tilde{v}_{n,\mu}(x) = S_{n,\mu}^{n-\hat{\mu}}(x)^{-1} \tilde{v}_{n,\mu}(n) S_{n,\mu}^{n}(x)$$



Cocycle Condition

• Check the cocycle condition by this new transition function

 $ightarrow \ln x \in p(n, \mu, \nu)$, we define new function,

 $P_{n,\mu\nu}^{m}(x_{\alpha}, x_{\beta}) = (u_{p_{0}p_{2}}^{m})^{y_{\beta}} \left[(u_{p_{2}p_{0}}^{m})^{y_{\beta}} \left(u_{p_{0}p_{2}}^{m} u_{p_{2}p_{3}}^{m} u_{p_{3}p_{1}}^{m} u_{p_{1}p_{0}}^{m} \right)^{y_{\beta}} u_{p_{0}p_{1}}^{m} (u_{p_{1}p_{3}}^{m})^{y_{\beta}} \right]^{y_{\alpha}}$ > The relation with $S_{n,\mu}^{m}(x)$ is

$$S_{n,\mu}^{m}(x) = P_{n,\mu\lambda}^{m}(x) \qquad (x \in p(n,\mu,\lambda))$$

$$S_{n,\mu}^{m}(x) = R_{n,\mu;\lambda}^{m}P_{n+\hat{\lambda},\mu\lambda}^{m}(x) \qquad (x \in p(n+\hat{\lambda},\mu,\lambda))$$

$$x_{\alpha} \qquad p_{0} \qquad p_{1}$$

Cocycle Condition on the Lattice

New Transition Function

 $v_{n,\mu}(x) = \omega_{\mu}(x)\check{v}_{n,\mu}(x) \quad \text{at } x \in f(n,\mu)$

• By original transition function $\check{v}_{n,\mu}$, cocycle condition is $\check{v}_{n-\hat{\mu},\nu}(x)\check{v}_{n,\mu}(x)\check{v}_{n,\nu}(x)^{-1}\check{v}_{n-\hat{\nu},\mu}(x)^{-1} = 1$

cocycle condition on the lattice $g_{ij}g_{jk}g_{ki} = 1$

• By new transition function $v_{n,\mu}$, ω_{μ} causes

Cocycle Condition

$\geq R^m$ is

$$\begin{aligned} R_{n,\mu;\alpha}^{m}(x_{\beta}, x_{\gamma}) &= \left[\left(u_{03}^{m} u_{37}^{m} u_{72}^{m} u_{20}^{m} \right)^{y_{\gamma}} u_{02}^{m} \\ &\quad \cdot \left(u_{27}^{m} u_{74}^{m} u_{46}^{m} u_{62}^{m} \right)^{y_{\gamma}} u_{26}^{m} u_{61}^{m} \left(u_{16}^{m} u_{64}^{m} u_{45}^{m} u_{51}^{m} \right)^{y_{\gamma}} \\ &\quad \cdot u_{10}^{m} \left(u_{01}^{m} u_{15}^{m} u_{53}^{m} u_{30}^{m} \right)^{y_{\gamma}} \right]^{y_{\beta}} \left(u_{03}^{m} u_{35}^{m} u_{51}^{m} u_{10}^{m} \right)^{y_{\gamma}} u_{01}^{m} \\ R_{n,\mu;\beta}^{m}(x_{\alpha}, x_{\gamma}) &= \left(u_{03}^{m} u_{37}^{m} u_{72}^{m} u_{20}^{m} \right)^{y_{\gamma}} u_{02}^{m} \\ R_{n,\mu;\gamma}^{m}(x_{\alpha}, x_{\beta}) &= u_{03}^{m} \end{aligned}$$

Cocycle Condition

> By the new interpolate function, in $x \in p(n, \mu, \nu)$, the cocycle condition is

$$\tilde{v}_{n-\hat{\mu},\nu}(x)\tilde{v}_{n,\mu}(x) = \left(P_{n,\mu\nu}^{n-\hat{\nu}-\hat{\mu}}(x)^{-1}v_{n-\hat{\mu},\nu}(n)P_{n,\mu\nu}^{n-\hat{\mu}}(x)\right)\left(P_{n,\mu\nu}^{n-\hat{\mu}}(x)^{-1}v_{n,\nu}(n)P_{n,\mu\nu}^{n}(x)\right)$$
$$=P_{n,\mu\nu}^{n-\hat{\nu}-\hat{\mu}}(x)^{-1}v_{n-\hat{\mu},\nu}(n)v_{n,\nu}(n)P_{n,\mu\nu}^{n}(x)$$

$$\tilde{v}_{n-\hat{\mu},\nu}(x)\tilde{v}_{n,\mu}(x) = P_{n,\mu\nu}^{n-\hat{\nu}-\hat{\mu}}(x)^{-1}v_{n-\hat{\nu},\mu}(n)v_{n,\mu}(n)P_{n,\mu\nu}^n(x)$$

> When (cocycle condition)=1 is satisfied at each site,

$$\tilde{v}_{n-\hat{\mu},\nu}(x)\tilde{v}_{n,\mu}(x)\tilde{v}_{n,\nu}(x)^{-1}\tilde{v}_{n-\hat{\mu},\nu}(x)^{-1} = 1$$

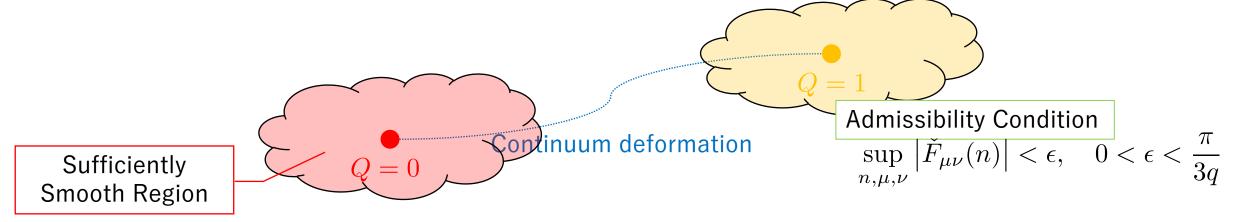
Topological Charge

• By the new transition function, the topological charge is

$$\begin{split} P(\tilde{v}_{n,\mu}) = & \frac{1}{24\pi^2} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \left\{ 3 \int_{p(n+\hat{\mu}+\hat{\nu},\mu,\nu)} \mathrm{d}^2 x \operatorname{Tr} \left[P_{n+\hat{\mu}+\hat{\nu},\mu\nu}^n \partial_\rho (P_{n+\hat{\mu}+\hat{\nu},\mu\nu}^n)^{-1} (R_{n+\hat{\mu},\mu;\nu}^n)^{-1} \partial_\sigma R_{n+\hat{\mu},\mu;\nu}^n \right] \\ & - 3 \int_{p(n+\hat{\nu},\mu,\nu)} \mathrm{d}^2 x \operatorname{Tr} \left[P_{n+\hat{\nu},\mu\nu}^n \partial_\rho (P_{n+\hat{\nu},\mu\nu}^n)^{-1} (R_{n,\mu;\nu}^n)^{-1} \partial_\sigma R_{n,\mu;\nu}^n \right] \\ & - \int_{f(n+\hat{\mu},\mu)} \mathrm{d}^3 x \operatorname{Tr} \left[S_{n+\hat{\mu},\mu}^n \partial_\nu (S_{n+\hat{\mu},\mu}^n)^{-1} S_{n+\hat{\mu},\mu}^n \partial_\rho (S_{n+\hat{\mu},\mu}^n)^{-1} S_{n+\hat{\mu},\mu}^n \partial_\sigma (S_{n+\hat{\mu},\mu}^n)^{-1} \right] \\ & + \int_{f(n,\mu)} \mathrm{d}^3 x \operatorname{Tr} \left[S_{n,\mu}^n \partial_\nu (S_{n,\mu}^n)^{-1} S_{n,\mu}^n \partial_\rho (S_{n,\mu}^n)^{-1} S_{n,\mu}^n \partial_\sigma (S_{n,\mu}^n)^{-1} \right] \right\} \end{split}$$

Admissibility Condition

- It is impossible to define the topological charge which has intervals on the lattice.
- > Under the "Admissibility condition", the gauge configuration is sufficiently smooth.



• Field strength is

$$\check{F}_{\mu\nu}(n) = \frac{1}{iq} \ln \left[U(n,\mu) U(n+\hat{\mu},\nu) U(n+\hat{\nu},\mu)^{-1} U(n,\nu)^{-1} \right]^q$$

 $\underset{31/07/23}{X}$ q is needed for the invariance under the \mathbb{Z}_q one-form transformation.

Topological Charge in the SU(N) Gauge Theory

- By the new transition function, we calculate topological charge $Q(v_{n,\mu})$.
- In 4*d* continuum theory, (van Baal, Commun. Math. Phys. 85 (1982))

$$\begin{split} Q(v_{n,\mu}) = & \frac{1}{24\pi^2} \sum_{\mu} \int \mathrm{d}_3 \sigma_{\mu} \varepsilon_{\mu\nu\alpha\beta} \operatorname{Tr} \left((v_{n,\mu} \partial_{\nu} v_{n,\mu}^{-1}) (v_{n,\mu} \partial_{\alpha} v_{n,\mu}^{-1}) (v_{n,\mu} \partial_{\beta} v_{n,\mu}^{-1}) \right) \\ &+ \frac{1}{8\pi^2} \sum_{\mu,\nu} \int \mathrm{d}_2 S_{\mu\nu} \varepsilon_{\mu\nu\alpha\beta} \operatorname{Tr} \left((v_{n,\nu}^{-1} \partial_{\alpha} v_{n,\nu})_{x_{\mu} = a_{\mu}} (v_{n,\mu} \partial_{\beta} v_{n,\mu}^{-1})_{x_{\nu} = 0} \right) \\ = & \mathbb{Z} + \frac{N-1}{N} \cdot \frac{1}{8} \varepsilon_{\mu\nu\alpha\beta} z_{\mu\nu} z_{\alpha\beta} \end{split}$$
integer fractional

Differential Calculus on the Lattice

• k-form function:
$$f(n) \equiv \frac{1}{k!} \sum_{\mu_1, \dots, \mu_k} f_{\mu_1 \dots \mu_k}(n) \, \mathrm{d}x_{\mu_1} \dots \mathrm{d}x_{\mu_k}$$

- The definition of extra derivative: $dx_{\mu} f_{\mu_1 \cdots \mu_k}(n) = f_{\mu_1 \cdots \mu_k}(n + \hat{\mu}) dx_{\mu}$
- > By this extra derivative on the lattice, the Leibniz rule on the lattice is $d[f(n)g(n)] = df(n) \cdot g(n) + (-1)^k f(n) \cdot dg(n)$

$$F(n) = \frac{1}{2} \sum_{\mu,\nu} f_{\mu\nu}(n) dx_{\mu} dx_{\nu}$$

$$f(n)f(n) = \frac{1}{4} \sum_{\mu,\nu,\rho,\sigma} f_{\mu\nu}(n) f_{\rho\sigma}(n + \hat{\mu} + \hat{\nu}) dx_{\mu} dx_{\nu} dx_{\sigma}$$

$$= \frac{1}{4} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} f_{\mu\nu}(n) f_{\rho\sigma}(n + \hat{\mu} + \hat{\nu}) dx_1 dx_2 dx_3 dx_4$$

\mathbb{Z}_q One-form Global Symmetry and Gauge Symmetry

- \mathbb{Z}_q one-form symmetry is corresponding to multiplying the \mathbb{Z}_q element by the transition function from the point of fiber bundle.
- > Consider the transformation of the transition function on the lattice
- > Firstly, consider the \mathbb{Z}_q one-form global symmetry

Admissibility Condition

• Field strength is

$$\check{F}_{\mu\nu}(n) = \frac{1}{iq} \ln \left[U(n,\mu)U(n+\hat{\mu},\nu)U(n+\hat{\nu},\mu)^{-1}U(n,\nu)^{-1} \right]^q \quad |F_{\mu\nu}(n)| < \pi$$

 \geq Invariant under the \mathbb{Z}_q one-form gauge transformation

> We require the admissibility condition to the field strength,

$$\sup_{n,\mu,\nu} \left| \check{F}_{\mu\nu}(n) \right| < \epsilon, \quad 0 < \epsilon < \frac{\pi}{3q}$$

> Under this condition, the Bianchi identity is satisfied.

$$\sum_{\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \Delta_{\nu} \check{F}_{\rho\sigma}(n) = 0$$

 $^{
u,
ho,\sigma}$

31/07/23

Proof of Admissibility Condition

• Field strength is

$$F_{\mu\nu}(n) = \frac{1}{iq} \ln \left[e^{i(a_{\mu}(n) + a_{\nu}(n) + \hat{\mu} - a_{\mu}(n + \hat{\nu}) - a_{\nu}(n))} \right]^{q}$$

= $\frac{1}{iq} \left[i \left(a_{\mu}(n) + a_{\nu}(n) + \hat{\mu} - a_{\mu}(n + \hat{\nu}) - a_{\nu}(n) \right) \cdot q + 2\pi i N_{\mu\nu}(n) \right]$
= $\Delta_{\nu} a_{\mu}(n) - \Delta_{\mu} a_{\nu}(n) + \frac{2\pi}{q} N_{\mu\nu}(n)$

 $> N_{\mu\nu}$ is the function for taking $F_{\mu\nu}$ back to the range $[-\pi, \pi]$.

Proof of Admissibility Condition

• By the admissibility condition,

$$\sum_{\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \Delta_{\nu} F_{\mu\nu}(n) < 6\epsilon$$

➢ By definition,

$$\sum_{\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \Delta_{\nu} \left(\Delta_{\rho} a_{\sigma}(n) - \Delta_{\rho} a_{\sigma}(n) + \frac{2\pi}{q} N_{\rho\sigma}(n) \right) = \frac{2\pi}{q} \sum_{\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \Delta_{\nu} N_{\rho\sigma}(n)$$

 $> \mathsf{By} \quad \varepsilon_{\mu\nu\rho\sigma} \Delta_{\nu} N_{\rho\sigma}(n) < 1$ $0 < 6\epsilon < \frac{2\pi}{q} \quad \Rightarrow \quad 0 < \epsilon < \frac{\pi}{3q}$

\mathbb{Z}_q Two-form Gauge Field

• \mathbb{Z}_q two-form gauge field is defined by

 $z_{\mu\nu}(n) = z_{\mu\nu}\delta_{n_{\mu},L-1}\delta_{n_{\nu},L-1} + \Delta_{\mu}z_{\nu}(n) - \Delta_{\nu}z_{\mu}(n) + qN_{\mu\nu}(n) \quad \in \mathbb{Z}$

> To protect the antisymmetric value,

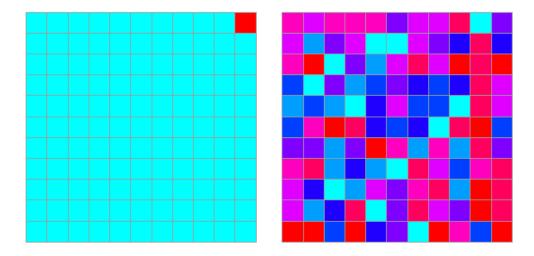
$$\begin{cases} 0 \le z_{\mu\nu}(n) < q & \text{for } \mu < \nu, \\ z_{\mu\nu}(n) \equiv -z_{\nu\mu}(n) & \text{for } \mu > \nu \end{cases}$$

> Under the \mathbb{Z}_q one-form gauge transformation, \mathbb{Z}_q two-form field is $z_{\mu\nu}(n) \rightarrow z_{\mu\nu}(n) + \Delta_{\mu} z_{\nu}(n) - \Delta_{\nu} z_{\mu}(n) + q N_{\mu\nu}(n)$

\mathbb{Z}_q Two-form Gauge Field

 This Z_q two-form gauge field is connected to an arbitrary gauge configuration by the Z_q one-form gauge transformation.

$$z_{\mu\nu}(n) = z_{\mu\nu} \delta_{n_{\mu}, L-1} \delta_{n_{\nu}, L-1} + \Delta_{\mu} z_{\nu}(n) - \Delta_{\nu} z_{\mu}(n) + q N_{\mu\nu}(n) \quad \in \mathbb{Z}$$



Fractional Topological Charge by \mathbb{Z}_q Two-form Gauge Field

$$Q = \frac{1}{32\pi^2} \sum_{n \in \Lambda} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \left[F_{\mu\nu}(n) + \frac{2\pi}{q} z_{\mu\nu}(n) \right] \left[F_{\rho\sigma}(n + \hat{\mu} + \hat{\nu}) + \frac{2\pi}{q} z_{\rho\sigma}(n + \hat{\mu} + \hat{\nu}) \right]$$
$$z_{\mu\nu}(n) = z_{\mu\nu} \delta_{n_{\mu},L-1} \delta_{n_{\nu},L-1} + \Delta_{\mu} z_{\nu}(n) - \Delta_{\nu} z_{\mu}(n) + q N_{\mu\nu}(n) \quad \in \mathbb{Z}$$
$$Q = \frac{1}{8q^2} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma} + \frac{1}{8\pi q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} \sum_{n_{\mu}=0} \check{F}_{\rho\sigma}(n)$$
$$+ \frac{1}{32\pi^2} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} \check{F}_{\mu\nu}(n) \check{F}_{\rho\sigma}(n + \hat{\mu} + \hat{\nu})$$

\mathbb{Z}_a One-form Global Symmetry on the Lattice

• The factor of fractionality ω_{μ} is related to the \mathbb{Z}_q one-form transform.

➤ Link variable

$$U(n,\mu) \to \exp\left(\frac{2\pi i}{q}z_{\mu}\right)U(n,\mu) \qquad n_{\mu} = 0$$

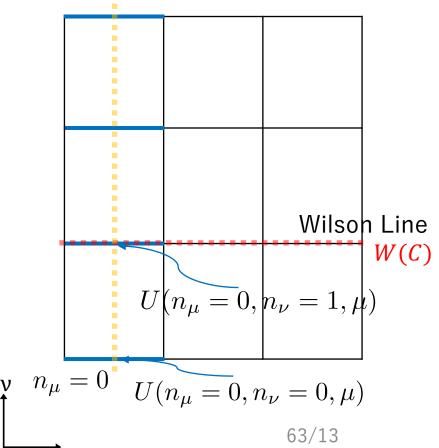
Transition function
$$\in \mathbb{Z}_{q}$$

I ransition function

$$\check{v}_{n,\mu}(x) \rightarrow \begin{cases} \exp\left(\frac{2\pi i}{q}z_{\mu}\right)\check{v}_{n,\mu}(x) & \text{for } x_{\mu} = 1\\ \check{v}_{n,\mu}(x) & \text{otherwise} \end{cases}$$

Cocycle condition

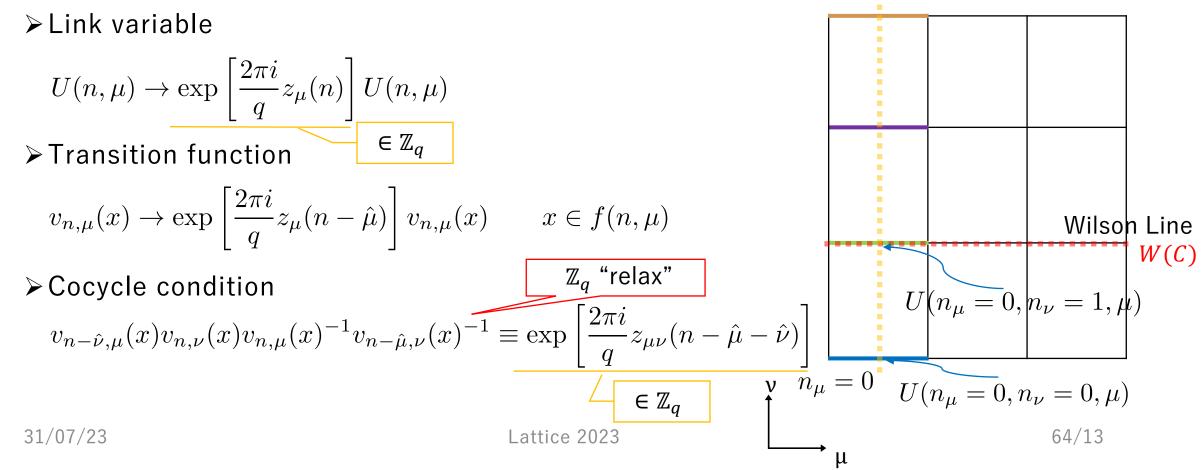
$$\check{v}_{n-\hat{\nu},\mu}(x)\check{v}_{n,\nu}(x)\check{v}_{n,\mu}^{-1}(x)\check{v}_{n-\hat{\mu},\nu}^{-1}(x) = 1$$



μ

\mathbb{Z}_q One-form Gauge Symmetry on the Lattice

- The factor of fractionality ω_{μ} is related to the \mathbb{Z}_q one-form transform.



Mixed 't Hooft Anomaly

• e^{iS} is ,under the T-transformation,

$$e^{i\pi qQ} \xrightarrow{\mathcal{T}} e^{-i\pi qQ} = e^{-2\pi i qQ} \cdot e^{i\pi qQ}$$
$$= \exp\left(-\frac{2\pi i}{8q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma}\right) e^{i\pi qQ}$$

>Introducing a local counter term which is invariant under the \mathbb{Z}_q one-form gauge transformation,

$$e^{-S_{\text{counter}}} \equiv \exp\left[\frac{2\pi ik}{4q} \sum_{n} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu}(n) z_{\rho\sigma}(n+\hat{\mu}+\hat{\nu})\right]$$
$$= \exp\left(\frac{2\pi ik}{4q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma}\right)$$

Mixed 't Hooft Anomaly

• e^{iS} is ,under the T-transformation, when $\theta = \pi$,

$$e^{i\pi qQ} \xrightarrow{\mathcal{T}} e^{-i\pi qQ} = e^{-2\pi i qQ} \cdot e^{i\pi qQ}$$
$$= \exp\left(-\frac{2\pi i}{8q} \sum_{\mu,\nu,\rho,\sigma} \varepsilon_{\mu\nu\rho\sigma} z_{\mu\nu} z_{\rho\sigma}\right) e^{i\pi qQ}$$

$$e^{-S_{\text{counter}}} \equiv \exp\left(\frac{2\pi ik}{8q}\sum_{\mu,\nu,\rho,\sigma}\varepsilon_{\mu\nu\rho\sigma}z_{\mu\nu}z_{\rho\sigma}\right)$$

Time Reversal Symmetry

$$\begin{split} U(n,\mu) \xrightarrow{\mathcal{T}} \begin{cases} U(\bar{n},\mu) & \text{for } \mu \neq 4, \\ U(\bar{n}-\hat{4},4)^{-1} & \text{for } \mu = 4, \end{cases} \\ \check{F}_{\mu\nu}(n) \xrightarrow{\mathcal{T}} \begin{cases} \check{F}_{\mu\nu}(\bar{n}) & \text{for } \mu \neq 4, \nu \neq 4, \\ -\check{F}_{4\nu}(\bar{n}-\hat{4}) & \text{for } \mu = 4, \\ -\check{F}_{\mu4}(\bar{n}-\hat{4}) & \text{for } \nu = 4. \end{cases} \quad z_{\mu\nu}(n) \xrightarrow{\mathcal{T}} \begin{cases} z_{\mu\nu}(\bar{n}) & \text{for } \mu \neq 4, \nu \neq 4, \\ -z_{4\nu}(\bar{n}+\hat{4}) & \text{for } \mu = 4, \\ -z_{\mu4}(\bar{n}+\hat{4}) & \text{for } \nu = 4, \end{cases} \\ z_{\mu\nu} \xrightarrow{\mathcal{T}} \begin{cases} z_{\mu\nu} & \text{for } \mu \neq 4, \nu \neq 4, \\ -z_{4\nu} & \text{for } \mu = 4, \\ -z_{4\nu} & \text{for } \mu = 4, \\ -z_{\mu4} & \text{for } \nu = 4. \end{cases} \end{split}$$

Witten Effect

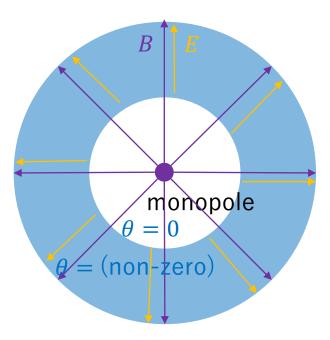
• Setting magnetic monopole with magnetic charge g, electric charge q is induced by θ term.

$$S = -\frac{1}{2g^2} \int \operatorname{tr}(f \wedge \star f) + \frac{\theta}{8\pi^2} \int \operatorname{tr}(f \wedge f)$$

➢ In the abelian gauge theory, EOM is

$$\partial_{\mu}F^{\mu\nu} = \frac{g^2}{4\pi^2} \varepsilon_{\mu\nu\rho\sigma} \partial_{\mu} \left(\theta \partial_{\rho} A_{\sigma}\right)$$
$$\blacktriangleright \nabla \cdot \mathbf{E} = -\frac{g^2}{4\pi^2 \epsilon_0} \nabla \theta \cdot \mathbf{B} \qquad \rho/\epsilon_0$$

> Dirac quaternization is condition: $gq = \theta$



Cardy-Rabinovici model

$$S[\tilde{a}_{\mu}, s_{\mu\nu}, n_{\mu}] = S_{\text{kin}}[\tilde{a}_{\mu}, s_{\mu\nu}] + S_{\text{matter}}[\tilde{a}_{\mu}, s_{\mu\nu}, n_{\mu}]$$
$$= \frac{1}{2g^2} \sum_{(x, \mu, \nu)} f_{\mu\nu}(x)^2 + iN \sum_{(x, \mu)} \left(n_{\mu}(x) + \frac{\theta}{2\pi} \sum_{\tilde{x}} F(x - \tilde{x}) m_{\mu}(\tilde{x}) \right) \tilde{a}_{\mu}(x)$$