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Normalizing flows

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

f(z) is a network trained to minimize the Kullbach-Leibler divergence:

Once f is trained, build a Markov chain with Metropoils-Hastings reweighting

~ Trivializing map
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Exploding training costs

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072

L

vs HMC: ~ξ ²
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Exploding training costs
Total cost  = configuration production cost + network training cost

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072

L

vs HMC: ~ξ ²
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Exploding training costs

Luigi Del Debbio, Joe Marsh Rossney, and 
Michael Wilson Phys. Rev. D 104, 094507 

Can we benefit from normalizing flows keeping training costs low?

Total cost  = configuration production cost + network training cost

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072

L

vs HMC: ~ξ ²
Training costs to achieve equal 
acceptance explode towards 
the continuum as ~ξ 8
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Learning trivializing flows

Idea: use the normalizing flow f  to help HMC sampling

      might be easier to sample from using HMC
lower autocorrelation times!
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Learning trivializing flows

Idea: use the normalizing flow f  to help HMC sampling

      might be easier to sample from using HMC
lower autocorrelation times!

2. Use HMC to build a Markov chain following 

1. Train the network f  minimizing the KL divergence.

3. Apply f ⁻¹  to the Markov chain to obtain configurations following

The algorithm

The acceptance of HMC with the new action     does not depend on f !
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Learning trivializing flows

2. Use HMC to build a Markov chain following 

1. Train the network f  minimizing the KL divergence.

3. Apply f ⁻¹  to the Markov chain to obtain configurations following

The algorithm

The acceptance of HMC with the new action     does not depend on f !

Lüscher: an exact trivializing flow is not known, but can be constructed via power 
series (Wilson flow)

It was not good enough to improve autocorrelation scaling towards the 
continuum on a CP(N) theory

Can normalizing flows be helpful as trivializing flows for HMC?

Lüscher, M. Trivializing Maps, the Wilson Flow and the HMC Algorithm. Commun. Math. Phys. 293, 899 (2010)

G. P. Engel, S. Schaefer, Testing trivializing maps in the Hybrid 
Monte Carlo algorithm, Comput.Phys.Commun. 182 (2011) 2107-2114.
See also S. Bacchio et al. Phys.Rev.D 107 (2023) 5

S. Foreman et al., HMC with Normalizing Flows, 
PoS LATTICE2021 (2022) 073. 
Also Mon 1:50PM

Xiao-Yong Jin, Neural Network Field Transformation and 
Its Application in HMC, PoS LATTICE2021 (2022) 600.
Also X. Jin Thu 2:30PM
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The model

Non-trivial correlation length

We study a      theory in 2 dimensions

symmetry: action invariant under

Bimodal probability density

HMC scaling:
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Keeping training costs low

Translational symmetry use convolutional networks

Total cost ≈ configuration production cost

configuration
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Translational symmetry use convolutional networks

Information within correlation length control network footprint

Total cost ≈ configuration production cost

configuration 2-point correlation
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Keeping training costs low

Translational symmetry use convolutional networks

Information within correlation length control network footprint

simple affine coupling layer with no hidden layers

footprint can be controlled with the kernel size k of the CNNs s and t

Total cost ≈ configuration production cost

configuration 2-point correlation
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Keeping training costs low

Translational symmetry use convolutional networks

Information within correlation length control network footprint

simple affine coupling layer with no hidden layers

footprint can be controlled with the kernel size k of the CNNs s and t

Total cost ≈ configuration production cost

configuration 2-point correlation

k = 3

37 trainable
parameters

Can this simple network learn something?
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Check 1: minimal network

2. Compare magnetization history with HMC

Learned trivializing flow reduces autocorrelations 
even with simple architectures

 Minimal architecture 

1. Train network minimizing KL

KL divergence saturates fast

Results from both algorithms are consistent with each other

1 affine coupling layer
k = 3
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Check 2: reusability on bigger volumes
Convolutional networks can be reused for bigger volumes

Autocorrelation times remain the same on bigger volumes 

Training should be done at the correlation length
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Scaling of the computational cost

Simple network architectures: 1 affine layer

Networks trained until saturation

Lattice with fixed physical size

Training cost negligible w.r.t. production cost

Total cost ≈ configuration production cost

Magnetization: 

Can this change with a different input theory?

For a fixed architecture the scaling does not improve

Autocorrelation times are decreased compared to HMC
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Training from a coarser theory

Longest correlation length is already captured in the coarsest lattice

a a/2

Input theory Target theory

Problem: the number of degrees of freedom is not the same at same physical volume

Studied two possible workarounds

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072
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Training from a coarser theory: bigger volume

Higher Metropolis-Hastings acceptance does not imply lower autocorrelation times

Training from larger to smaller lattice spacing keeping same degrees of freedom

a/2

Input theory

Target theory

a
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Training from a coarser theory: bigger volume

Higher Metropolis-Hastings acceptance does not imply lower autocorrelation times

Training from larger to smaller lattice spacing keeping same degrees of freedom

a

a/2

Input theory

Target theory

a
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Training from a coarser theory: interpolation

Not better than training directly from normal numbers

Input theory Target theory

a/2

Some information of correlation length already there

a

FHMC

[R. Abbott, Mon 4:20PM]

[N. Matsumoto, Mon 4:00PM]
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Training from a coarser theory: interpolation

Not better than training directly from normal numbers

Input theory Target theory

a/2

Some information of correlation length already there

a

interpolated

FHMC

[R. Abbott, Mon 4:20PM]

[N. Matsumoto, Mon 4:00PM]
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Training from a coarser theory: interpolation

Autocorrelations improved with respect to Gaussian

Combine 4 coarse configurations to reinforce information of correlation length

Input theory
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Training from a coarser theory: scaling study

For a fixed architecture the scaling does not improve

Autocorrelation times are decreased compared to HMC

Maybe iterative training to coarser theories can help
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Summary & Outlook

This works with simple network architectures

The algorithm improves the autocorrelation times of HMC, 
but the scaling is the same with fixed architecture

The networks can be trained at a small lattice size and
reused at a larger volume (with no further training)

Training from coarser lattices at bigger physical volume has better MH 
acceptance, but interpolation leads to better autocorrelation times at 
fixed architecture

Can this algorithm help with topology freezing?

Iterative application of training from coarsest lattice 

Although autocorrelation times are further improved, scaling towards 
the continuum is not
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Training from a coarser theory: iterated interpolation

L = 80

L = 40
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Avoiding bias: Metropolis – Hastings 

Target distribution

Proposal distribution

Accept-reject step

HMC Normalizing flows

Target distribution

Proposal distribution

Accept-reject step

Independent proposals
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Automatic differentiation

Scaling the kernel size also increases the number of operations to compute the HMC force

We need to compute the force of the new variables:

automatic differentiation
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Scaling increasing the kernel size

Scaling the kernel size leads to slight 
improvement in the autocorrelation scaling

Magnetization: 

Fit autocorrelation to


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

