

Machine Learning Trivializing Flows

Luigi Del Debbio Richard Kenway Joe Marsh Rossney

David Albandea Pilar Hernández Alberto Ramos

Vniver§itat DğValència

Normalizing flows

(a) Normalizing flow between prior and output distributionsM. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

f(z) is a network trained to minimize the Kullbach-Leibler divergence:

$$D_{\mathrm{KL}}(\tilde{p}_f \mid\mid p) = \int \mathcal{D}\phi \; \tilde{p}_f(\phi) \log \frac{\tilde{p}_f(\phi)}{p(\phi)}$$

 $\begin{array}{l} \bigstar \quad D_{\mathrm{KL}}(\tilde{p}_f \mid\mid p) \ge 0 \\ \\ \bigstar \quad D_{\mathrm{KL}}(\tilde{p}_f \mid\mid p) = 0 \iff \tilde{p}_f = p \quad \sim \text{Trivializing map} \end{array}$

 \rightarrow Once f is trained, build a Markov chain with Metropoils-Hastings reweighting

Exploding training costs

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

Exploding training costs

Total cost = configuration production cost + network training cost

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

Exploding training costs

Total cost = configuration production cost + network training cost

Can we benefit from normalizing flows keeping training costs low?

Learning trivializing flows

 \bigstar Idea: use the normalizing flow f to help HMC sampling

$$Z = \int D\phi \ e^{-S(\phi)} \xrightarrow{\tilde{\phi} = f(\phi)} \int D\tilde{\phi} \ e^{-S(f^{-1}(\tilde{\phi})) + \log \det J[f]} \equiv \int D\tilde{\phi} \ e^{-\tilde{S}(\tilde{\phi})}$$

 $\implies \tilde{S}$ might be easier to sample from using HMC

 \Box lower autocorrelation times!

Learning trivializing flows

7 Idea: use the normalizing flow f to help HMC sampling

$$Z = \int D\phi \ e^{-S(\phi)} \ \xrightarrow{\tilde{\phi} = f(\phi)} \int D\tilde{\phi} \ e^{-S(f^{-1}(\tilde{\phi})) + \log \det J[f]} \equiv \int D\tilde{\phi} \ e^{-\tilde{S}(\tilde{\phi})}$$

 \tilde{S} might be easier to sample from using HMC

 \Box lower autocorrelation times!

The algorithm

- 1. Train the network f minimizing the KL divergence.
- 2. Use HMC to build a Markov chain following $\tilde{p} = e^{-\tilde{S}(\phi)}$

$$\{\tilde{\phi}_1, \; \tilde{\phi}_2, \; \tilde{\phi}_3, \; \dots, \; \tilde{\phi}_N\} \sim e^{-\tilde{S}(\tilde{\phi})}$$

3. Apply f^{-1} to the Markov chain to obtain configurations following $p(\phi) = e^{-S(\phi)}$ $\{f^{-1}(\tilde{\phi}_1), f^{-1}(\tilde{\phi}_2), f^{-1}(\tilde{\phi}_3), \dots, f^{-1}(\tilde{\phi}_N)\} = \{\phi_1, \phi_2, \phi_3, \dots, \phi_N\} \sim e^{-S(\phi)}$

The acceptance of HMC with the new action \hat{S} does not depend on f!

2302.08408

Learning trivializing flows

The acceptance of HMC with the new action \hat{S} does not depend on f!

The model

We study a ϕ^4 theory in 2 dimensions $S(\phi) = \sum_{x} \left[-\beta \sum_{\mu=1}^2 \phi_{x+\mu} \phi_x + \phi_x^2 + \lambda (\phi_x^2 - 1)^2 \right]$

 \sub{Z}_2 symmetry: action invariant under $\phi
ightarrow -\phi$

Bimodal probability density

 $\stackrel{\clubsuit}{\longrightarrow} \text{Non-trivial correlation length } \xi$ $\stackrel{\clubsuit}{\longmapsto} \text{HMC scaling: } \tau_{\text{int}} \propto \xi^2$

Total cost \approx configuration production cost

Translational symmetry

use convolutional networks

$\operatorname{configuration}$

Total cost \approx configuration production cost

 \bigstar Translational symmetry \square use convolutional networks

 \bigstar Information within correlation length \implies control network footprint

configuration

2-point correlation

Total cost \approx configuration production cost

 \bigstar Translational symmetry \square use convolutional networks

 \bigstar Information within correlation length \implies control network footprint

 \Box simple affine coupling layer with no hidden layers

$$\phi_x \to e^{s(\phi)}\phi_x + t(\phi)$$

 \Box footprint can be controlled with the kernel size k of the CNNs s and t

2-point correlation

Total cost \approx configuration production cost

 \bigstar Translational symmetry \square use convolutional networks

 \bigstar Information within correlation length \implies control network footprint

 \Box simple affine coupling layer with no hidden layers

$$\phi_x \to e^{s(\phi)}\phi_x + t(\phi)$$

 \Box footprint can be controlled with the kernel size k of the CNNs s and t

2-point correlation

Can this simple network learn something?

Check 1: minimal network

Minimal architecture

1 affine coupling layer k = 3

1. Train network minimizing KL

Learned trivializing flow reduces autocorrelations even with simple architectures

☆

Check 2: reusability on bigger volumes

 \bigstar Convolutional networks can be reused for bigger volumes

Autocorrelation times remain the same on bigger volumes

Training should be done at the correlation length

Scaling of the computational cost

 \Rightarrow Can this change with a different input theory?

Training from a coarser theory

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

☆ Longest correlation length is already captured in the coarsest lattice
 ☆ Problem: the number of degrees of freedom is not the same at same physical volume
 ↓ Studied two possible workarounds

Training from a coarser theory: bigger volume

Training from larger to smaller lattice spacing keeping same degrees of freedom

Algorithm	$ au_M$
HMC	77.9(1.5)
FHMC (coarse theory, bigger volume)	63.6(2.2)
FHMC (from Gaussian)	56.9(1.8)

Higher Metropolis-Hastings acceptance does not imply lower autocorrelation times

Training from a coarser theory: bigger volume

Training from larger to smaller lattice spacing keeping same degrees of freedom

Algorithm	$ au_M$
HMC	77.9(1.5)
FHMC (coarse theory, bigger volume)	63.6(2.2)
FHMC (from Gaussian)	56.9(1.8)

Higher Metropolis-Hastings acceptance does not imply lower autocorrelation times

Training from a coarser theory: interpolation

 \bigstar Some information of correlation length already there

Not better than training directly from normal numbers

Training from a coarser theory: interpolation

 \bigstar Some information of correlation length already there

Not better than training directly from normal numbers

Training from a coarser theory: interpolation

Combine 4 coarse configurations to reinforce information of correlation length

Autocorrelations improved with respect to Gaussian

Training from a coarser theory: scaling study

Summary & Outlook

 \checkmark This works with simple network architectures

- The algorithm improves the autocorrelation times of HMC, but the scaling is the same with fixed architecture
 - The networks can be trained at a small lattice size and reused at a larger volume (with no further training)
- Training from coarser lattices at bigger physical volume has better MH acceptance, but interpolation leads to better autocorrelation times at fixed architecture

 $\stackrel{{}_{\leftarrow}}{\rightarrow}$ Iterative application of training from coarsest lattice

Although autocorrelation times are further improved, scaling towards the continuum is not

 $\stackrel{\mathsf{L}}{\Rightarrow}$ Can this algorithm help with topology freezing?

Training from a coarser theory: iterated interpolation

$$L = 40$$

Algorithm	$ au_M$
HMC	570(21)
FHMC (from Gaussian)	420(16)
FHMC (4-config. interpolation)	269(17)
FHMC (4-config. interpolation) x2	164.5(5.0)

$$L = 80$$

Algorithm	$ au_M$
HMC	2518(130)
FHMC (from Gaussian)	1965(165)
FHMC (4-config. interpolation)	1146(182)
FHMC (4-config. interpolation) x^2	788(128)

Avoiding bias: Metropolis – Hastings

Automatic differentiation

$$Z = \int D\phi \ e^{-S(\phi)} \xrightarrow{\tilde{\phi} = f(\phi)} \int D\tilde{\phi} \ e^{-S(f^{-1}(\tilde{\phi})) + \log \det J[f]} \equiv \int D\tilde{\phi} \ e^{-\tilde{S}(\tilde{\phi})}$$

 $\stackrel{\bullet}{\mathbf{X}}$ We need to compute the force of the new variables: $\tilde{F}_x = \frac{\partial \tilde{S}[\tilde{\phi}]}{\partial \tilde{\phi}_x}$

➡ automatic differentiation

 \bigstar Scaling the kernel size also increases the number of operations to compute the HMC force

Scaling increasing the kernel size

