
Status of Grid Python Toolkit (GPT)

Christoph Lehner
(Uni Regensburg)

https://github.com/lehner/gpt

July 31st, 2023 - Lattice 2023

https://github.com/lehner/gpt


Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

▶ A toolkit for lattice QCD
and related theories as
well as QIS (a parallel
digital quantum
computing simulator) and
Machine Learning

▶ Python frontend, C++
backend

▶ Built on Grid data
parallelism (MPI,
OpenMP, SIMD, and
SIMT)

Initial commit Feb. 2020, 65k lines of C++/Python, >1700 commits so far, 13 contributors
1 / 26

https://github.com/lehner/gpt


Code co-authors:

▶ M. Bruno

▶ D. Richtmann

▶ T. Blum

▶ S. Bürger

▶ P. Georg

▶ L. Jin

▶ D. Knüttel

▶ S. Meinel

▶ M. Schlemmer

▶ S. Solbrig

▶ T. Wettig

▶ T. Wurm

2 / 26



What’s new since lattice 2022?



What is new since 2022 (1/3):

▶ New Machine Learning features such as

▶ Adam optimizer
▶ gauge-equivariant (local) parallel-transport layers
▶ gauge-equivariant (un)pooling layers
▶ classical multi-grid blocking layers

motivated by multi-grid gauge-equivariant models such as
arXiv:2304.10438, arXiv:2302.05419 (to appear in PRD)

3

FIG. 2. The two-level multigrid model studied in this work. The model is similar to the one studied in Ref. [12], but explicitly
gauge-equivariant pooling and unpooling layers are used in the current work for the restriction and prolongation layers. The
coarse-grid layer is limited by the blue features. This layer and the last four layers are LPTC layers introduced in Ref. [12].

The subsampling layer SubSample: F' ! F'̃, ' 7!
SubSample' is defined by

SubSample'(y) = '(Br(y)) (9)

for a given choice of reference-point map Br defined in
Eq. (3). This construction therefore satisfies Eq. (4) with
'̃ = RL' for a given ' 2 F'. For a discussion of a general
group-equivariant pooling layer, see Ref. [54].

The prolongation layer (PL) is simply defined as

PL = Pool† � SubSample† , (10)

where the dagger of an operator O is defined in the usual

way by requiring '†
1O'2 = ('†

2O
†'1)

⇤ for arbitrary '1

and '2. Note that the couples and weights of a restric-
tion and prolongation layer can in principle be chosen
independently. The models studied in this work, how-
ever, use the same couples and weights for both RL and
PL so that PL = RL†.2

A graphical representation of the restriction and pro-
longation layers is given in Fig. 1. The pooling layer is
a generalization of the local parallel-transport convolu-
tion (LPTC) layer introduced in Ref. [12]. However, one
would typically implement the combined RL directly to
avoid unnecessary computation of feature elements that
will be discarded by the subsequent subsampling layer.
This can be done e�ciently by precomputing, for each
complete set of paths, a field S ! End(VG) that is used
in combination with a reduction operation within each
block. We provide such implementations of both RL and
PL in the Grid Python Toolkit (GPT) [56].

We note that the construction of similar restriction
and prolongation operations has a long history, see, e.g.,
[20, 25, 35].

2 In the context of a multigrid solver, Ref. [55] calls this the vari-
ational choice because it follows from a variational principle.

C. Coarsening of the gauge fields

In the current work, we preserve the general model
structure introduced in Ref. [12]. However, we replace
the restriction and prolongation layers with ones based
on gauge-equivariant pooling and unpooling layers, see
Fig. 2. This replacement introduces an explicit gauge
degree of freedom on the coarse grid so that the coarse-
grid layer can be constructed in an explicitly gauge-
equivariant manner. For this layer we need coarse gauge
fields Ũ .

The gauge transformation property of coarse fields
given in Eq. (4) is consistent with gauge fields on the
coarse grid that perform a parallel transport between ref-
erence sites Br(y) and Br(y

0) on the fine grid, where y
and y0 are neighboring sites on the coarse grid. Such
gauge fields must transform as

Ũµ(y) ! ⌦̃(y)Ũµ(y)⌦̃†(y + µ̂) (11)

under gauge transformations. We investigate two choices
for the Ũµ in this work.

The first choice is to connect Br(y) and Br(y
0) using

the shortest path on the fine grid connecting both points.
In this work, we use a block map B such that B(y) is
given by a Cartesian product of neighboring sites in each
dimension, and a fixed reference site Br within each block
so that the shortest path is unique and aligns with a
coordinate axis. We then always have

Br(y
0) � Br(y) = bµ̂ (12)

with unit vector µ̂ in direction µ and b 2 N+. The coarse-
grid gauge field Ũµ(y) corresponding to this pair of ref-
erence points is then simply

Ũµ(y) = Uµ(Br(y)) · · · Uµ(Br(y) + (b � 1)µ̂) (13)

with fine-grid gauge links Uµ. We will refer to this choice
as the “plain coarse-link model.”

see also Tilo’s talk today at 5pm in Algorithms session.

3 / 26



What is new since 2022 (2/3):

▶ Efficient general stencil and parallel transport:

▶ Twisted Mass Fermions + DSDR term

▶ Quadruple precision global reduction support via Dekker
tuples:

⇒

4 / 26



What is new since 2022 (3/3):
▶ Performance on LUMI-G and Frontier (1 node):

15 TF/s/node possible without inter-GCD communication.
5 TF/s/node in strong scaling up to 64 nodes for 643 × 256
problem size!

5 / 26



Overview 2020 – 2023



Guiding principles:

▶ Performance Portability
common Grid-based framework for current and future (exascale)

architectures

▶ Modularity / Composability
build up from modular high-performance components, several layers

of composability, “composition over parametrization”

6 / 26



Layout and dependencies



Python script / Jupyter notebook

gpt (Python)
• Defines data types and objects (group structures etc.)

• Expression engine (linear algebra)

• Algorithms (Solver, Eigensystem, . . .)

• File formats

• Stencils / global data transfers

• QCD, QIS, ML subsystems

cgpt (Python library written in C++)
• Global data transfer system (gpt creates pattern, cgpt optimizes

data movement plan)

• Virtual lattices (tensors built from multiple Grid tensors)

• Optimized blocking, linear algebra, and Dirac operators

• Vectorized ranlux-like pRNG (parallel seed through
3xSHA256)

Grid Eigen FFTW

7 / 26



The QCD module



Example: Load QCD gauge configuration and test unitarity

Here: expression first parsed to a tree in Python (gpt), forwarded
as abstract expression to C++ library (cgpt) for evaluation

8 / 26



Example: create a pion propagator on a random gauge field

9 / 26



Example: solvers are modular and can be mixed

General design principle: use modularity of python code instead of
large number of parameters to configure solvers/algorithms;
Python can also be used in configuration files

10 / 26



Further example: Multi-Grid solver

11 / 26



All algorithms implemented in Python – Example: Euler-Langevin
stochastig DGL integrator

12 / 26



Implemented algorithms:

▶ BiCGSTAB, CG, CAGCR, FGCR, FGMRES, MR solvers

▶ Multi-grid, split-grid, mixed-precision, and defect-correcting
solver combinations

▶ Coarse and fine-grid deflation

▶ Implicitly restarted Arnoldi and Lanczos, power iteration

▶ Chebyshev polynomials

▶ All-to-all vector generation

▶ SAP and even-odd preconditioners

▶ MSPCG (additive Schwarz)

▶ Gradient descent, non-linear CG, Adam optimizers

▶ Runge-Kutta integrators, Wilson flow

▶ Fourier acceleration

▶ Coulomb and Landau gauge fixing

▶ Domain-wall–overlap transformation and MADWF

▶ Symplectic integrators (leapfrog, OMF2, and OMF4)

▶ Markov: Metropolis, heatbath, Langevin, (DD-)HMC

13 / 26



Implemented fermion actions:

▶ Domain-wall fermions: Mobius and zMobius

▶ Twisted-mass fermions

▶ Wilson-clover fermions both isotropic and anisotropic
(RHQ/Fermilab actions); Open boundary conditions available

Example: stout-smeared heavy-quark Mobius DWF

14 / 26



Performance



Benchmark results committed to github

https://github.com/lehner/gpt/tree/master/benchmarks/

reference

Results available for GPU and CPU architectures. In the following, focus
on Frontier/LUMI-G (AMD MI250X), Juwels/Leonardo booster (NVIDIA
A100) and Fugaku/QPace4 (A64FX).

15 / 26

https://github.com/lehner/gpt/tree/master/benchmarks/reference
https://github.com/lehner/gpt/tree/master/benchmarks/reference


Juwels Booster (node has 4× A100-40GB): Single-node
domain-wall fermion /D operator

Compare to HBM bandwidth of 1,555 GB/s per GPU

16 / 26



QPace4 (node has one A64FX): Single-node domain-wall fermion
/D operator

Compare to HBM bandwidth of 1,000 GB/s per A64FX

17 / 26



Juwels Booster (node has 4× A100-40GB): Single-node site-local
matrix products

Compare to HBM bandwidth of 1,555 GB/s per GPU

18 / 26



Juwels Booster (node has 4× A100-40GB): Inner product
(reduction)

Compare to HBM bandwidth of 1,555 GB/s per GPU

19 / 26



Performance summary

Machine Operation Performance Bandwidth

Frontier /D 9 TF/s 6.2 TB/s
Booster /D 12 TF/s 7.8 TB/s
Booster ColorMatrix × 5.2 TB/s
Booster SpinColorMatrix × 5.1 TB/s
Booster SpinColorVector ⟨·, ·⟩ 4.8 TB/s
QPace4 /D 0.95 TF/s 0.68 TB/s
SuperMUC-NG /D 0.72 TF/s 0.51 TB/s

Single-node SP performance of Wilson /D and linear algebra on Juwels Booster (4xA100, HBM BW 1.6 TB/s per

A100), Qpace4 (A64FX, HBM BW of 1 TB/s per node), and the SuperMUC-NG (Skylake 8174). The /D

performance is inherited from Grid, the linear algebra performance is based on cgpt.

20 / 26



Example applications



RBC ensemble generation

(the generating GPT scripts are linked below; around 200 lines of
Python script each)

ID a−1/GeV Nf L3 × T × Ls b + c mres × 104 mπ/MeV mK/MeV mDs/GeV mπL Code

48I 1.73 2+1 483 × 96× 24 2 6.1 139 499 – 3.87 CPS
64I 2.35 2+1 643 × 128× 12 2 3.1 139 507 – 3.77 CPS
96I 2.69 2+1 963 × 192× 12 2 2.3 132 486 – 4.70 CPS

1 1.73 2+1 323 × 64× 24 2 6.3 208 513 – 3.85 GPT script
2 1.73 2+1 243 × 48× 32 2 4.6 284 534 – 3.96 GPT script
3 1.73 2+1 323 × 64× 24 2 6.5 210 597 – 3.88 GPT script
4 1.74 2+1 243 × 48× 24 2 6.2 279 534 – 3.84 GPT script
5 1.75 2+1+1 243 × 48× 24 2 6.7 280 536 1.99 3.84 GPT script
6 1.75 2+1+1 243 × 48× 24 2 6.7 280 536 1.5 3.84 GPT script
7 1.76 2+1+1 243 × 48× 24 2 7.9 284 540 1.39 3.88 GPT script
8 2.37 2+1+1 323 × 64× 12 2 3.0 280 536 1.99 3.88 GPT script
9 2.37 2+1 323 × 64× 12 2 3.0 281 535 – 3.80 GPT script
A 1.76 2+1 243 × 48× 8 2 41.5 303 548 – 4.15 GPT script
B 1.73 2+1 323 × 64× 24 2 6.1 139 499 – 2.58 GPT script
C 1.73 2+1 643 × 128× 24 2 6.1 139 499 – 5.16 GPT script
D 1.74 2+1 323 × 64× 24 2 6.2 279 534 – 5.12 GPT script
E 3.50 2+1 483 × 192× 12, openBC 2 1.4 280 535 – 3.87 GPT script

21 / 26

https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble1.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble2.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble3.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble4.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble5.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble6.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble7.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble8.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensemble9.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensembleA.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensembleB.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensembleC.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensembleD.py
https://github.com/lehner/gpt/tree/master/applications/hmc/dwf/ensembleE.py


Further examples

▶ QED corrections to g-2 HVP and tau decays of RBC/UKQCD

▶ Ensemble parameters and g-2 HVP (Tuesday talk C.L.)

▶ g-2 HLbL project of RBC/UKQCD (combined with QLattice)

▶ Scattering studies in scalar field theory (Bruno et al.)

▶ Testing stochastic locality with CP(n) models (Bruno,
Morandi)

Also applied by BNL and Bielefeld groups for ongoing projects.

22 / 26



Teaching



LGT lecture based on interactive GPT notebooks

(link to lecture)

23 / 26

https://homepages.uni-regensburg.de/~lec17310/teaching/wise2122/lqft.html


The machine learning module



Example: train simple feed-forward network

24 / 26



The quantum computing module



Example: create and measure a 5-qubit bell state

25 / 26



How to use GPT?

https://github.com/lehner/gpt

The docker images are automatically generated for each version
that passes the CI interface.

CI currently has test coverage of 96%, running on each pushed
commit.

26 / 26

https://github.com/lehner/gpt


Thank you


