Bond-weighting method
for the Grassmann tensor renormalization group

Shinichiro Akiyama a), b)

a) Center for Computational Sciences, University of Tsukuba
b) Endowed Chair for Quantum Software, University of Tokyo

Based on SA, JHEP11(2022)030

LATTICE 2023 @ Fermilab
2023.8.3
Tensor network & Lattice field theory

☑ A method to investigate quantum many-body system expressing an objective function as a tensor contraction (= tensor network).

Orús, APS Physics 1(2019)538-550
Meurice-Sakai-Unmuth–Yockey, Rev. Mod. Phys. 94(2022)025005

☑ TN allows us to study the lattice QFTs w/ and w/o the sign problem.

• w/ the Hamiltonian formalism
 Describe a state vector as a TN, which is variationally optimized.

Cf. DMRG, TEBD

Cf. Talks by Goksu+, Matsumoto+, Florio+, Hanqing+, David Lin+, ...

• w/ the Lagrangian formalism
 Describe a path integral as a TN, which is approximately contracted.

Cf. TRG, TNR, Loop-TNR, GILT

Levin-Nave, PRL99(2007)120601
Yang-Gu-Wen, PRL118(2017)110504
Hauru-Delcamp-Mizera, PRB97(2018)045111
Cf. Talks by Samlodia, Nakayama, Hite+, Judah+, Hostetler+, ...
Advantages of the TRG approach

✔ Tensor renormalization group (TRG) approximately contracts a given TN based on the idea of real-space renormalization group.

 - No sign problem
 - The computational cost scales logarithmically w. r. t. system size
 - Direct evaluation of the Grassmann integrals
 - Direct evaluation of the path integral

✔ Applicability to the higher-dimensional systems

 - If the system is translationally invariant on a lattice, we can easily apply the TRG to contract the TN.
 - 4D LGTs have been investigated by the TRG.

Cf. TRG study of 4D Z_n ($n = 2, 3$) gauge-Higgs models at finite density

SA-Kuramashi, JHEP05(2022)102, arXiv:2304.07934
Levin-Nave TRG

SVD defines three-leg tensors

\[T_{IJ}^{(n)} \approx \sum_{\alpha=1}^{D} U_{I\alpha}^{(n)} \sqrt{\sigma_{\alpha}^{(n)}} \sqrt{\sigma_{\alpha}^{(n)}} V_{J\alpha}^{(n)*} \]

Repeating this cycle \(n \) times, \(2^n \) local tensors can be approximately contracted.

Iteration

Contraction

Levin-Nave, PRL99(2007)120601
Bond-weighted TRG (BTRG)

- Introduces some weight matrix on each bond in the tensor network.
- Considers a coarse-graining transformation including these bond matrices.

Adachi-Okubo-Todo, PRB105(2022)L060402
SVD defines three-leg tensors and new bond weights

\[
T_{ij}^{(n)} \approx \sum_{\alpha=1}^{D} U_{i\alpha}^{(n)} \left(\sigma_{\alpha}^{(n)} \right)^{1-k} \left(\sigma_{\alpha}^{(n)} \right)^{k} \left(\sigma_{\alpha}^{(n)} \right)^{1-k} V_{j\alpha}^{(n)*}
\]

※ \(k \in \mathbb{R} \) is a hyperparameter explained later

※ Initial weights are identity matrices
A good choice of the hyperparameter $k \in \mathbb{R}$ in the SVD of local tensor.

\[
T_{IJ}^{(n)} \approx \sum_{\alpha=1}^{D} U_{I\alpha}^{(n)} (\sigma_{\alpha}^{(n)}) \frac{1-k}{2} (\sigma_{\alpha}^{(n)})^k (\sigma_{\alpha}^{(n)}) \frac{1-k}{2} V_{J\alpha}^{(n)*}
\]

n labels the renormalization steps

A good choice of k? \rightarrow **Power counting for the singular value.**

By the TRG renormalization, $T^{(n+1)} \sim \left[\left(\sigma_{\alpha}^{(n)} \right) \frac{1-k}{2} (\sigma_{\alpha}^{(n)})^k \right]^4$

By the SVD of $T^{(n+1)}$, $T^{(n+1)} \sim \sigma_{\alpha}^{(n+1)}$

Suppose the singular-value spectrum becomes scale-invariant w/ sufficiently large n, we have

\[
\left[\left(\sigma_{\alpha}^{(n)} \right) \frac{1-k}{2} (\sigma_{\alpha}^{(n)})^k \right]^4 = \sigma_{\alpha}^{(n)} \Rightarrow k = -0.5
\]
BTRG for the 2D classical Ising model

✔ $k = -0.5$ seems optimal and the accuracy of the BTRG is higher than the Levin-Nave TRG and the HOTRG with the same bond dimension.

✔ Introduction of k does not increase the computational cost. Therefore, the cost of the BTRG is same with the Levin-Nave TRG.

Adachi-Okubo-Todo, PRB105(2022)L060402
Extension of TRG to the lattice fermion

✔ Any TRG algorithm can be used to evaluate the Grassmann path integral.

✔ The Grassmann tensor is useful to represent the Grassmann path integral.

※ Multi-linear combination of Grassmann numbers

Sa-Kadoh, JHEP10(2021)188

\[T_{x,t} x' t' \eta_\bar{x}_t \eta_\bar{x}' t' = \sum_{x,t,x',t'} T_{x,t} x' t' \eta_\bar{x}_t \eta_\bar{x}' t' \]

<table>
<thead>
<tr>
<th>Tensor</th>
<th>Grassmann Tensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Integer</td>
</tr>
<tr>
<td>Contraction</td>
<td>(\Sigma_i \ldots \int \int d\eta d\bar{\eta} e^{-\bar{\eta} \eta} \ldots)</td>
</tr>
<tr>
<td>Path integral</td>
<td>(t\text{Tr}[\prod T])</td>
</tr>
<tr>
<td></td>
<td>(g\text{Tr}[\prod T])</td>
</tr>
</tbody>
</table>

✔ Does the bond weighting method improve the Grassmann TRG?
Benchmarking w/ the free massless Wilson fermion in 2D

✓ $k = -0.5$ seems optimal and the bond-weighting method does improve the accuracy of the Grassmann Levin-Nave TRG.

![Graph showing the relative error for different values of D. The graph has a logarithmic y-axis and a linear x-axis, with the x-axis ranging from -0.7 to 0.0 and the y-axis ranging from 10^{-7} to 10^{-3}. The legend indicates different values of D: $D = 20$, $D = 40$, $D = 60$, $D = 80$, $D = 100$. The value of V is 1024^2.](image-url)
The Levin-Nave algorithm does not reproduce the scale-invariant structure in the local Grassmann tensor, but the Grassmann BTRG does.
Summary

✔ Bond-weighting method is a new way to improve the TRG algorithm.

✔ The method was originally proposed for the spin system. We numerically confirmed that the bond-weighting method is useful for the lattice fermions.

✔ Benchmarking with the 2D free Wilson fermions, we have found that the accuracy of the TRG is highly improved. The optimal choice is $k = -0.5$, which suggests the optimal bond weight be determined just by the geometry of TN.

✔ A sample code of the Grassmann BTRG is available on GitHub. 2D single-flavor Gross-Neveu-Wilson model at finite density as an example. https://github.com/akiyama-es/Grassmann-BTRG

✔ Several Grassmann BTRG studies of 2D LGTs are on-going.
Finite-entanglement scaling

In 1+1D, we have the finite-entanglement scaling based on the Matrix Product State (MPS). The correlation length scales with $\xi_D \sim D^\kappa$, where

$$\kappa = \frac{6}{c\left(\sqrt{\frac{12}{c}} + 1\right)} \quad \rightarrow \quad \kappa = 1.344 \cdots \text{ w/ } c = 1$$

Assuming this, the relative error of the free energy should be fitted by $aD^{-2\kappa}$

$k = -0.5: a \approx 0.06, \kappa \approx 1.26$

$k = 0 \quad : a \approx 0.4, \kappa \approx 1.22$

Tagliacozzo+, PRB78(2008)024410
Pollmann+, PRL102(2009)255701