Geometric Convergence of HMC
on Complete Riemannian Manifolds

Xinhao Yu and A. D. Kennedy

Higgs Centre
School of Physics and Astronomy
University of Edinburgh

Lattice 2023
Denote \mathcal{M} the state space as a complete Riemannian manifold, potential(action) V is smooth, we show

- HMC with a single Leapfrog step converges if \mathcal{M} is compact,
- if \mathcal{M} is non-compact, HMC with extra Metropolis step on the radial direction (define later) of \mathcal{M}, converges.
1 Background: Harris’ theorem on ergodicity

2 Convergence proof for HMC
Proofs of the convergence of Markov Chain Monte Carlo (MCMC) use the Banach fixed-point theorem.

If \((X, d)\) is a complete metric space and the transition \(P : X \to X\) is a contraction mapping,\[d(P\mu, P\nu) \leq a \cdot d(\mu, \nu)\]for some \(a \in [0, 1)\) and \(\forall \mu, \nu \in X\), then there is a unique fixed-point \(\mu^*\) such that\[\lim_{n \to \infty} P^n \mu = \mu^* \quad \forall \mu \in X.\]

So there are two things to do:

- Specify a metric on the space of probability measures.
- Show \(P\) is a contraction mapping.
A sufficient for the convergence on compact spaces is the Doeblin’s condition

\[\exists \alpha \in (0, 1) \text{ such that } \quad P(x, \cdot) \geq \alpha \nu(\cdot) \quad \forall x \in \mathcal{M} \]

then the Markov chain converges geometrically.

- Total Variation (TV) metric:
 \[
 d(\mu, \nu) \equiv \|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{B}(\mathcal{M})} |\mu(A) - \nu(A)|.
 \]

- It is shown \(\forall \mu, \nu \in \mathcal{X} \):
 \[
 \|P\mu - P\nu\|_{TV} \leq (1 - \alpha) \cdot \|\mu - \nu\|_{TV}
 \]
Harris’ Theorem

Doeblin’s condition may not hold on non-compact state spaces \mathcal{M} since

$$1 = \int_{\mathcal{M}} P(x, \mathcal{M}) \cdot \mu_V(dx) \geq \alpha \nu(\mathcal{M}) \cdot \mu_V(\mathcal{M})$$

and the volume $\mu_V(\mathcal{M})$ of a non-compact \mathcal{M} can be infinite.
Harris’ theorem

Hairer and Mattingly gave an elegant simplification of Harris theorem\(^1\).

Geometric Drift Condition (GDC)

There is a Lyapunov function

\[L : \mathcal{M} \to [0, \infty), \gamma \in (0, 1), \text{ and } K \geq 0 \]

such that \(\forall x \in \mathcal{M} \) we have

\[(PL)(x) \leq \gamma \cdot L(x) + K. \]

- We call this the **strong GDC**.
- If \(\gamma \in (0, 1] \) it is the **weak GDC**.

Doeblin’s Condition (DC)

\(\exists \alpha \in (0, 1), \) a probability measure \(\nu \), and a **small set** \(C = \{ x \in \mathcal{M} : L(x) \leq R \} \)

where \(R > 2K/(1 - \gamma) \), such that

\[\inf_{x \in C} \mathcal{P}(x, \cdot) \geq \alpha \nu(\cdot). \]

- Probability density

\[\inf_{x, y \in C} P(x \to y) \geq \alpha. \]

1 Background: Harris’ theorem on ergodicity

2 Convergence proof for HMC
HMC assigns each degree of freedom a fictitious momentum:

\[q \in \mathcal{M} \longrightarrow (q, p) \in T^*\mathcal{M} \]

As a cotangent bundle \(T^*\mathcal{M} \) admits symplectic structure because:

- **Liouville one-form**: \(\exists \theta \in \Lambda^1(TT^*\mathcal{M}) \) with \(\beta^*\theta = \beta, \ \forall \beta \in \Lambda^1(T^*\mathcal{M}). \)
- **A closed, non-singular fundamental two-form** \(\omega \):

\[
\omega \equiv -d\theta, \quad d\omega = 0, \quad \det \omega \neq 0.
\]

Then for every smooth function \(F \), there is a unique Hamiltonian vector field \(\hat{F} \) such that

\[
\omega(\hat{F}, \cdot) = -dF.
\]

Trajectories, denoted as \(\sigma_{\hat{F}} \), form local flows tangential to \(\hat{F} \).
Doeblin’s condition for probability density

Probability Densities

A probability density is usually just the Radon–Nikodym derivative of the transition probability, but sometimes this needs to be extended to a distribution (generalized function).

Measure of $T^*\mathcal{M}$ is the volume form of the phase space:

$$\text{Vol} \equiv \omega^n.$$

Define probability densities:

$$P(x \to y) \equiv \frac{d\mathcal{P}(x, \cdot)}{d\text{Vol}}(y), \quad Q(y) \equiv \frac{d\nu}{d\text{Vol}}(y).$$

Then $\forall x, y \in \mathcal{C}$:

$$P(x \to y) \geq c > 0 \iff P(x \to y) \geq \alpha Q(y) \iff \mathcal{P}(x, \cdot) \geq \alpha \nu.$$
It is convenient to use certain measures on $\mathcal{T}^*\mathcal{M}$ and \mathcal{M}, which are invariant under transition:

- symplectomorphisms (canonical transformations) preserve the volume form:
 \[\mathcal{L}_{\hat{V}}, \hat{T} \text{ Vol} = 0. \]

- \hat{T} is an isometry: Riemannian measure μ_g is preserved.

As a result, the extended target distribution

\[
\int_{\text{Vol}} e^{-H} = \int_{\text{Vol}} e^{-(V + T)}
\]

has well-defined state density e^{-H}, and after integration over momentum:

\[
\int_{\text{Vol}} e^{-(T + V)} \Rightarrow \int_{\mu_g} e^{-V}
\]

also has well-defined e^{-V}.
The algorithm we use has several components:

1. (Partial) Momentum Refreshment

\[S_{MR} : (q, p) \mapsto (q', p') = p \cdot \cos \theta + \eta \cdot \sin \theta, \quad \eta \sim \mu_G. \]

2. Molecular Dynamics Monte Carlo \((S_{MDMC})\) Which is made up of
 - A Hamiltonian trajectory
 \[S_{MD} : (q, p) \mapsto (q', p') = \sigma(t). \]
 - A Metropolis accept/reject test \(S_{MC}\).
 - A momentum flip if rejected:
 \[S_{Flip} : (q, p) \mapsto (q, -p). \]
We use the Leapfrog (Verlet, Störmer) integrator S_{LF} to approximate Hamiltonian dynamics S_{MD}, given a step size τ, it is

$$S_{MD} = S_{LF} \equiv \sigma_{\hat{V}} \left(\frac{\tau}{2} \right) \circ \sigma_{\hat{T}} (\tau) \circ \sigma_{\hat{V}} \left(\frac{\tau}{2} \right).$$

Kinetic energy T is naturally defined by the inverse Riemannian metric

$$T(q, p) \equiv \frac{1}{2} g^{-1}_q(p, p).$$

Thus the Gibbs sampler of S_{MR} is the distribution

$$\mu_G(A) \propto \int_A e^{-T(q, \eta)} d\eta.$$
Leapfrog on the cotangent bundle

Levi-Civita connection ∇:

$$\nabla g = 0.$$
$$\nabla_X Y - \nabla_Y X - [X, Y] = 0, \quad \forall X, Y \in \mathfrak{X}(\mathcal{M}).$$

∇ is an Ehresmann connection:

$$T_x T^* \mathcal{M} = \mathcal{V}_x \oplus \mathcal{H}_x.$$

Denote \sharp the musical isomorphism of g, we have:

- $\hat{\mathcal{V}}$ is vertical:
 $$\hat{\mathcal{V}} = (0, -dV) \quad \sigma_{\hat{\mathcal{V}}}(t) : (q, p) \mapsto (q, p - t \cdot dV_q).$$

- \hat{T} is horizontal:
 $$\hat{T} = (p^\#, 0) \quad \sigma_{\hat{T}}(t) : (q, p) \mapsto (\exp_q(t \cdot p^\#), p'), \quad T(x) = T(x').$$
Reasons for using a single Leapfrog:

- When C disconnected, $\sigma_{\tilde{T}}$ can join state between subsets. This will not work if use exact integrator $\sigma_{\tilde{H}}$.
- A trajectory consists of a random number of Leapfrog steps, while taking one step has positive probability.
- This depends on ability of the algorithm crossing a potential barrier, HMC is not implemented to deal with barrier.
So, an update is:

\[(q_0, p_0) \xrightarrow{S_{	ext{MR}}} (q_0, p_1) \xrightarrow{\sigma\hat{V}} (q_0, p_2) \xrightarrow{\sigma\hat{T}} (q_1, p_3) \xrightarrow{\sigma\hat{V}} (q_1, p_4) \xrightarrow{S_{	ext{MR}}} (q_1, p_5)\]

The step \(S_{\text{MC}} \circ S_{\text{Flip}}\) after \((q_1, p_4)\) is not shown explicitly.

small set

The Lyapunov function is chosen to be Hamiltonian: \(L \equiv H\).

The small set is:

\[\mathcal{C} = \{x \in T^*\mathcal{M}\mid H(x) \leq H_R\}\]
Figure: Single Leapfrog HMC on $T_q^* M$
We have

- $|V(q_1) - V(q_0)| \leq H_R \Rightarrow |q_1 - q_0| \leq R$.
- $|dV_{q_0}|$ is bounded, so does $T(q_0, |dV_{q_0}|)$, denoted by T_R.

σ_T exists:

By Hopf-Rinow theorem, between any two points on M there exists a geodesic joining them, σ_T is the unique horizontal lift of it.

$T(q_0, p_2) = T(q_1, p_3)$ is bounded, since $T = d(q_0, q_1)^2/2\tau^2$.

$p_2 = p_0 \cos \theta + \eta \sin \theta - \frac{\tau}{2} dV_{q_0} \Rightarrow e^{-T(\eta)}$ is bounded.

As a result, the probability density is bounded by

$$P(x \rightarrow y) \geq c = \exp \left\{ \frac{-2}{\sin^2 \theta} \left[\frac{R^2}{2\tau^2} + \cos^2 \theta V_R + \frac{\tau^2}{4} T_R^2 \right] \right\} \cdot e^{-2H_R},$$

which is the multiplication of probability densities from two S_{MR} and a Metropolis test.
No need for Harris’ theorem if total momentum refreshment.

However in general we must consider phase space $T^*\mathcal{M}$ as the state space instead; e.g., when partial momentum refreshment is used.

Lyapunov function L

Choose the Lyapunov function to be the Hamiltonian, $L = H$. In general it is always minus the logarithm of the target distribution.

The strategy of our proof is

1. Momentum Refreshment satisfies the **strong GDC**.
2. Molecular Dynamics satisfies **weak GDC**.
3. Thus combining them HMC satisfies **strong GDC** on compact \mathcal{M}.

Xinhao Yu (Edinburgh)
Geometric Convergence of HMC
Tuesday, 1 August 2023
Generalized Drift Condition for compact \mathcal{M}

\mathcal{M} is compact and V is smooth, so must be bounded $V \leq V_{\text{max}}$.

1. Partial momentum refreshment (\mathcal{P}_{MR}) satisfies the strong GDC

$$(\mathcal{P}_{\text{MR}}H)(q, p) = \langle H(q, p) \rangle_\eta$$

$$\propto \int_\Omega [T(q, S_{\text{MR}}(p)) + V(q)] e^{-T(\eta)} \, d\eta$$

$$= V(q) + (\cos \theta)^2 T(q, p) + (\sin \theta)^2$$

$$= (\cos \theta)^2 H(q, p) + (\sin \theta)^2 (1 + V(q))$$

$$\leq (\cos \theta)^2 H(q, p) + (\sin \theta)^2 (1 + V_{\text{max}}).$$

This also works for pseudofermions, since they are generated using a Gibbs sampler (heat-bath) from a distribution with exponentially small tails.
Weak Generalized Drift Condition for the Metropolis Algorithm

In general any Metropolis algorithm satisfies the weak GDC with minus log probability as the Lyapunov function.

Let \(\tilde{x} = (\tilde{q}, \tilde{p}) = S_{\text{MD}}(x) \), then the acceptance rate is

\[
A(x, \tilde{x}) = \min \left(1, e^{-H(\tilde{x}) + H(x)} \right) = \min \left(1, e^{-\delta H} \right).
\]

Thus we have

\[
(P_{\text{MD}} H)(x) = A \cdot H(\tilde{x}) + (1 - A) \cdot H(x)
\]

\[
= H(x) + A \cdot \delta H.
\]

The term \(A \cdot \delta H \) is bounded from above since

- If \(\delta H \leq 0 \) then \(A \cdot \delta H = \delta H \leq 0 \).
- If \(\delta H > 0 \) then \(A \cdot \delta H = e^{-\delta H} \delta H \leq 1/e \), the maximum value being attained at \(\delta H = 1 \).
The combination of steps satisfy the strong GDC.
If a bounded number of transitions \(\{P_i\} \) with \(i = 1, \ldots, n \) all satisfy the weak GDC, and furthermore one of them \(P_k \) satisfies the strong GDC, then the composite transition satisfies the strong GDC whose parameters are

\[
\gamma = \gamma_k, \quad K = \sum_i K_i.
\]

Thus HMC on a compact Riemannian manifold satisfies the strong GDC.
Drift Condition on non-compact \mathcal{M}

What goes wrong in a non-compact case?

- Doeblin’s Condition is fine.
- previous results, such as weak GDC for Metropolis still hold.
- V is no longer bounded thus S_{MR} merely satisfies the weak GDC

\[(P_{MD})(q, p) = V(q) + (\cos \theta)^2 T(p) + (\sin \theta)^2\]
\[= H(q, p) + \sin \theta^2(1 - T(p)),\]

We fix this by introducing a new Markov step that has the desired fixed-point distribution and satisfies strong GDC by construction. It is a Metropolis algorithm on the radial direction.
The algorithm is on the base manifold \mathcal{M}. With a reference point q_0 as the origin, the radius is defined as the distance $r_q \equiv d(q, q_0)$, the complementary angular directions are denoted by $\theta \in \Omega_\theta$, so we have the parameterization $q = (r, \theta)$.

Define a forward step $f : r \to f(r) = R_f$ and the corresponding backward step $b : r \to g(r) = R_b$ such that $b = f^{-1}$. Then, the algorithm works as follows

1. $r \to R_f$ or $r \to R_b$ with equal probability $= \frac{1}{2}$.
2. Apply a Metropolis test.
At a specific angle θ. Denote the acceptance rate $A_x(r \rightarrow R_x) = \min \left(1, e^{-V(R_x) + V(r)} \cdot \frac{dR_f}{dr}\right)$, then the transition acting on V is:

$$(P_r V)(r) = \frac{1}{2} \sum_{x \in \{f, b\}} \{V(R_x)A_x + V(r)(1 - A_x)\}$$

Three conditions sufficient for Radial Metropolis to satisfy strong GDC:

1. $\exists \tilde{R}$ such that $\frac{P(R_f)}{P(r)} \frac{dR_f}{dr} \leq 1 \leq \frac{P(R_b)}{P(r)} \frac{dR_b}{dr}$ for all $r > \tilde{R}$.
2. Backward step shrinks V: $\exists \rho \in (0, 1)$ such that $\forall r \geq \tilde{R}$ one has $V(R_b) \leq \rho V(r) + N$.
3. $\exists M \geq 0$ such that $\frac{dR_x}{dr} \cdot \delta V \cdot e^{-\delta V} \leq M$.
Under these requirements

\[
(\mathcal{P}_r V)(r) = \frac{1}{2} \sum_{x \in \{f,b\}} \{V(R_x)A_x + V(r)(1 - A_x)\}
\]

\[
= \frac{1}{2} \left\{ \frac{d R_f}{dr} \delta V e^{-\delta V} + V(r) + V(R_b) \right\}
\]

\[
\leq \frac{1 + \rho}{2} V(r) + M + N
\]

\[
= \gamma V(r) + K.
\]

We now provide a choice of forward/backward steps that meet these requirements.
Case 1: $V(r) = kr^\alpha + o(r^\alpha)$.

- Forward step: $r \rightarrow R_f = (1 + \epsilon)r$,
- Backward step: $r \rightarrow R_b = r/(1 + \epsilon)$.

All three conditions are met:

1. $\tilde{R} \geq \left\{ \frac{\log(1 + \epsilon)}{k (1 - (1 + \epsilon)^{-\alpha})} \right\}^{1/\alpha}$.
2. $\gamma = \frac{1}{(1 + \epsilon)^\alpha}$.
3. $K = (1 + \epsilon)/e$.
Consider the lattice action with volume N and n dimension of ϕ (thus $\mathcal{M} = \mathbb{R}^{N \times n}$):

$$S = \sum_{x,i} \frac{1}{2} |\nabla_\mu \phi_{x,i}|^2 + \frac{1}{2} m^2 |\phi_{x,i}|^2 + \frac{\lambda}{4!} (|\phi_{x,i}|^2)^2.$$

Set a basis $(\theta, r) \in \mathbb{R}^{N \times n}$ such that $\phi_{x,i} = f_{x,i}(\theta)r$ and $\sum_{x,i} |f_{x,i}(\theta)|^2 = 1$, the action is:

$$S = k_1(\theta)r^4 + k_2(\theta)r^2.$$

Note r is the radius in $\mathbb{R}^{N \times n}$.

Example: ϕ^4
Radial Metropolis: logarithmic potential

Case 2: $V(r) = \beta \log r + o(\log r)$. \hspace{1cm} $\beta \geq D - 1 \geq 0$ for normalization

- Forward step: $R_f = r(1 + \epsilon \cdot r)^{\delta}$,
- Backward step: $r = R_b(1 + \epsilon \cdot R_b)^{\delta}$.

All three conditions are met:

1. $\tilde{R}_b \geq \frac{1}{\epsilon} \left\{ \left((1 + \delta)^{\frac{1}{\beta - 1}} - 1 \right)^{1/\delta} \right\}$
2. $\gamma = \frac{1}{\delta}$.
3. $K = \frac{\beta(1+\delta)}{(\beta-1)e}$.
Radial Metropolis: uniform GDC

What we have done so far: Radial Metropolis satisfies strong GDC in any direction by construction.

What we need: Radial Metropolis satisfies the strong GDC. Thus the final step is to combine the GDCs in all angular directions and obtain one single GDC bound. Fortunately Ω_{θ} is compact, at least in finite dimensional spaces, so we have the following theorem:

For a family of strong drift conditions along radial directions with $\gamma(\theta) \in (0, 1)$ and $K(\theta) > 0$ are continuous functions of $\theta \in \Omega_{\theta}$ for a compact state subspace Ω, there exist a constant $\gamma \in [0, 1)$ and a constant $K > 0$ such that they are maxima of the corresponding functions at some θ, hence the family of the strong GDCs yields uniformly a strong drift condition with γ and K:

$$(P_r L)(r, \theta) \leq \gamma L(r, \theta) + K.$$
Thank you!