Recent Developments of Euclidean Dynamical Triangulations with Non-Trivial Measure Term

Lattice 2023
August 1, 2023

Marc Schiffer, Perimeter Institute

In collaboration with
M. Dai, W. Freeman, J. Laiho, and J. Unmuth-Yockey: to appear

see also [Mingwei Dai, today 4:20 pm, WH3NE], [Jack Laiho, today 4:40 pm, WH3NE]
Asymptotically Safe Quantum Gravity

- Perturbative quantum gravity: loss of predictivity
- Key idea of asymptotic safety: Quantum realization of scale symmetry
 - Imposes infinitely many conditions on theory space
 - Relevant directions: need measurement
 - Irrelevant directions: predictions of theory
Asymptotically Safe Quantum Gravity

• Perturbative quantum gravity:
Asymptotically Safe Quantum Gravity

- Perturbative quantum gravity:

 loss of predictivity
Asymptotically Safe Quantum Gravity

- Perturbative quantum gravity: loss of predictivity
- Key idea of asymptotic safety: Quantum realization of scale symmetry
• Perturbative quantum gravity: loss of predictivity
• Key idea of asymptotic safety: Quantum realization of scale symmetry
 ▶ imposes infinitely many conditions on theory space
 ▶ relevant directions: need measurement
 ▶ irrelevant directions: predictions of theory

\[k \partial_k \alpha_s = -\frac{11}{2\pi} \alpha_s^2 + \mathcal{O}(\alpha_s^4) \]
\[k \partial_k G = \epsilon G - \frac{50}{3} G^2 + \mathcal{O}(G^3) \]
Dynamical triangulations

- Discretization of spacetime in terms of triangulations

\[Z_{Dg e}^{-S}[g] \rightarrow X_{T1C T e -S E R} \]

with Euclidean Einstein-Regge action

\[S_{ER} = -\kappa^2 N^2 + \kappa^4 N^4 \]

[Regge, 1961]
Dynamical triangulations

- Discretization of spacetime in terms of triangulations

\[
\sum_{g} g
\rightarrow
\sum_{X} T
\]

with Euclidean Einstein-Regge action

\[
S_{ER} = -\kappa^2 N^2 + \kappa^4 N^4
\]

[Regge, 1961]
• Discretization of spacetime in terms of triangulations
Dynamical triangulations

- Discretization of spacetime in terms of triangulations
Dynamical triangulations

- Discretization of spacetime in terms of triangulations
Dynamical triangulations

- Discretization of spacetime in terms of triangulations

\[\int \mathcal{D}g \, e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} e^{-S_{\text{ER}}} \]

with Euclidean Einstein-Regge action \(S_{\text{ER}} = -\kappa_2 N_2 + \kappa_4 N_4 \) [Regge, 1961]
Lattice quantum gravity in $d = 4$

- Discretization of spacetime in terms of triangulations

\[
\int \mathcal{D}g \, e^{-S[g]} \rightarrow \sum_T \frac{1}{C_T} \quad e^{-S_{\text{ER}}}
\]
Lattice quantum gravity in \(d = 4 \)

- Discretization of spacetime in terms of triangulations

\[
\int \mathcal{D}g \, e^{-S[g]} \rightarrow \sum_T \frac{1}{C_T} \quad e^{-S_{ER}}
\]

- in \(d = 4 \): no physical phase, no indications for higher-order transition in \(\kappa_2-\kappa_4 \) - space

[Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994]
[Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]
\ldots
Lattice quantum gravity in $d = 4$

- Discretization of spacetime in terms of triangulations

$$
\int \mathcal{D}g \, e^{-S[g]} \rightarrow \sum_T \frac{1}{C_T} \quad e^{-S_{ER}}
$$

- in $d = 4$: no physical phase, no indications for higher-order transition in κ_2-κ_4 - space

 [Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994]
 [Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]
 . . .

- CDT: impose causal structure

Taken from [Loll, 2020]
Lattice quantum gravity in $d = 4$

- Discretization of spacetime in terms of triangulations

$$\int \mathcal{D}g e^{-S[g]} \to \sum_T \frac{1}{C_T} \left[\prod_{j=1}^{N_2} \mathcal{O}(t_j) \right] \beta e^{-S_{ER}}$$

- in $d = 4$: no physical phase, no indications for higher-order transition in $\kappa_2 - \kappa_4$ - space

[Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994]
[Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]

- CDT: impose causal structure

[Ambjørn, Loll, 1998], [Ambjørn, Jurkiewicz, Loll, 2000]

- EDT: include local measure term

[Bruegmann, Marinari, 1993], ...
[Laiho, Coumbe, 2011], [Ambjørn, Glaser, Goerlich, Jurkiewicz, 2013]

..
Lattice quantum gravity in $d = 4$

- Discretization of spacetime in terms of triangulations

$$\int \mathcal{D}g \, e^{-S[g]} \rightarrow \sum_{\mathcal{T}} \frac{1}{C_{\mathcal{T}}} \left[\prod_{j=1}^{N_2} \mathcal{O}(t_j)^{\beta} \right] e^{-S_{\text{ER}}}$$

- in $d = 4$: no physical phase, no indications for higher-order transition in $\kappa_2 - \kappa_4$ - space

[Ambjørn, Jain, Jurkiewicz, Kristjansen, 1993], [Bakker, Smit, 1994]
[Ambjørn, Jurkiewicz, 1995], [Bialas, Burda, Krzywicki, Petersson, 1996]

- CDT: impose causal structure

- EDT: include local measure term

[Bruegmann, Marinari, 1993], . . .
[Laiho, Coumbe, 2011], [Ambjørn, Glaser, Goerlich, Jurkiewicz, 2013]

...
Phase diagram of EDT

- Idea:
 follow AB-line towards large κ_2 and negative β

[Ambjorn, Glaser, Goerlich, Jurkiewicz, 2013]
[Coumbe, Laiho, 2014]
Phase diagram of EDT

- Idea:
 follow AB-line towards large κ_2 and negative β

- Challenge: Metropolis acceptance rate p drops:

 $\kappa_2 = 1.7, \ p \sim 10^{-3}$;
 $\kappa_2 = 2.45, \ p \sim 10^{-4}$;
 $\kappa_2 = 3.0, \ p \sim 3 \cdot 10^{-5}$;
 $\kappa_2 = 3.8, \ p \sim 5 \cdot 10^{-6}$;
 $\kappa_2 = 4.5, \ p \sim 1 \cdot 10^{-6}$;

Need efficient algorithm for low acceptance rates.

[Ambjorn, Glaser, Goerlich, Jurkiewicz, 2013]
[Coumbe, Laiho, 2014]
Rejection-free algorithm

- Used in studies of dynamical systems (e.g., growth of crystals)
- Rejection-free algorithm follows the steps

1. Initialize:
 1.1 Compute probability $p_{A \rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A \rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = P_{i \leq l} p_l$.

2. Generate a random number $r \in (0, \text{Max}(P_i))$.

3. Find the lattice site j such that $P_j - 1 < r \leq P_j$ (with $P_0 = 0$).

4. Perform the move at lattice site j.

5. Update the entries of p_i and P_i.

6. Repeat from 2.

If step (5.) is fast, compared to low Metropolis acceptance: \Rightarrow potential speedup of simulations.

Problem: $\text{SER} = -\kappa^2 N^2 + \kappa^4 N^4$, purely global!
Rejection-free algorithm

• Used in studies of dynamical systems (e.g., growth of crystals)

• Rejection-free algorithm follows the steps
 1. Initialize:
 1.1 Compute probability $p_{A \rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A \rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = \sum_{i \leq l} p_i$.
• Used in studies of dynamical systems (e.g., growth of crystals)

• Rejection-free algorithm follows the steps
 1. Initialize:
 1.1 Compute probability $p_{A\rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A\rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = \sum_{i \leq l} p_i$.
 2. Generate a random number $r \in (0, \text{Max}(P_i))$.
 3. Find the lattice site j such that $P_{j-1} < r \leq P_j$ (with $P_0 = 0$).
Rejection-free algorithm

- Used in studies of dynamical systems (e.g., growth of crystals)

- Rejection-free algorithm follows the steps
 1. Initialize:
 1.1 Compute probability $p_{A\rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A\rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = \sum_{i \leq l} p_i$.
 2. Generate a random number $r \in (0, \text{Max}(P_i))$.
 3. Find the lattice site j such that $P_{j-1} < r \leq P_j$ (with $P_0 = 0$).
 4. Perform the move at lattice site j.
 5. Update the entries of p_i and P_i.

Problem: $\text{SER} = -\kappa^2 N^2 + \kappa^4 N^4$, purely global!
Rejection-free algorithm

- Used in studies of dynamical systems (e.g., growth of crystals)

- Rejection-free algorithm follows the steps

 1. Initialize:
 1.1 Compute probability $p_{A \rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A \rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = \sum_{i \leq l} p_i$.

 2. Generate a random number $r \in (0, \text{Max}(P_i))$.
 3. Find the lattice site j such that $P_{j-1} < r \leq P_j$ (with $P_0 = 0$).
 4. Perform the move at lattice site j.
 5. Update the entries of p_i and P_i.
 6. Repeat from 2.

If step (5.) is fast, compared to low Metropolis acceptance: ⇒ potential speedup of simulations.

Problem: $\text{SER} = -\kappa^2 N^2 + \kappa^4 N^4$, purely global!
Rejection-free algorithm

• Used in studies of dynamical systems (e.g., growth of crystals)

• Rejection-free algorithm follows the steps
 1. Initialize:
 1.1 Compute probability \(p_{A \rightarrow B} \) at each lattice site \(i \), save them in a list \(p_i = p_{A \rightarrow B}(i) \).
 1.2 Save a list of summed probabilities \(P_i = \sum_{i \leq l} p_i \).
 2. Generate a random number \(r \in (0, \text{Max}(P_i)) \).
 3. Find the lattice site \(j \) such that \(P_{j-1} < r \leq P_j \) (with \(P_0 = 0 \)).
 4. Perform the move at lattice site \(j \).
 5. Update the entries of \(p_i \) and \(P_i \).
 6. Repeat from 2.

If step (5.) is fast, compared to low Metropolis acceptance:
 \(\Rightarrow \) potential speedup of simulations.
Rejection-free algorithm

- Used in studies of dynamical systems (e.g., growth of crystals)

- Rejection-free algorithm follows the steps
 1. Initialize:
 1.1 Compute probability $p_{A \rightarrow B}$ at each lattice site i, save them in a list $p_i = p_{A \rightarrow B}(i)$.
 1.2 Save a list of summed probabilities $P_i = \sum_{i \leq l} p_i$.
 2. Generate a random number $r \in (0, \text{Max}(P_i))$.
 3. Find the lattice site j such that $P_{j-1} < r \leq P_j$ (with $P_0 = 0$).
 4. Perform the move at lattice site j.
 5. Update the entries of p_i and P_i.
 6. Repeat from 2.

If step (5.) is fast, compared to low Metropolis acceptance:
⇒ potential speedup of simulations.

Problem: $S_{ER} = -\kappa_2 N_2 + \kappa_4 N_4$, purely global!
Detailed balance and probabilities

- Including local measure term: $S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}}$
- Detailed balance:

$$\frac{p_{A \rightarrow B}}{p_{B \rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}},$$

Monte-Carlo time from weight (“dwell time”): $\omega = \frac{1}{\sum_{i=1}^{N} p_{A \rightarrow B_i}}$.
Detailed balance and probabilities

- Including local measure term: \(S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}} \)
- Detailed balance:
 \[
 \frac{p_{A\rightarrow B}}{p_{B\rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}} ,
 \]
- Metropolis accept probabilities:
 \[
 p_{A\rightarrow B} = \begin{cases}
 1 & \text{if } S_B < S_A \\
 e^{(S_A - S_B)} & \text{if } S_B > S_A
 \end{cases} ,
 \]
 \[
 p_{A\rightarrow B} \neq (p_{A\rightarrow B})_{\text{loc}} (p_{A\rightarrow B})_{\text{glob}} .
 \]
Detailed balance and probabilities

- Including local measure term: \(S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}} \)
- Detailed balance:
 \[
 \frac{p_{A \rightarrow B}}{p_{B \rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}},
 \]

- Metropolis accept probabilities:
 \[
 p_{A \rightarrow B} = \begin{cases}
 1 & \text{if } S_B < S_A \\
 e^{(S_A - S_B)} & \text{if } S_B > S_A
 \end{cases},
 \]

- Ponderances: credits to Walter Freeman
 \[
 p_{A \rightarrow B} \neq (p_{A \rightarrow B})_{\text{loc}} (p_{A \rightarrow B})_{\text{glob}}.
 \]

- Monte-Carlo time from weight: \(\omega = \frac{1}{\sum_{i=1}^{N} p_{A \rightarrow B}} \).

Marc Schiffer, Perimeter Institute
Detailed balance and probabilities

- Including local measure term: $S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}}$
- Detailed balance:

\[
\frac{p_{A\rightarrow B}}{p_{B\rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}},
\]

- Metropolis accept probabilities:

\[
p_{A\rightarrow B} = \begin{cases}
1 & \text{if } S_B < S_A \\
\frac{e^{(S_A-S_B)}}{e^{(S_A-S_B)}} & \text{if } S_B > S_A
\end{cases},
\]

\[
p_{A\rightarrow B} \neq (p_{A\rightarrow B})_{\text{loc}} (p_{A\rightarrow B})_{\text{glob}}.
\]

- Ponderances: credits to Walter Freeman

[Di, Freeman, Laiho, MS, Unmuth-Yockey; to appear]

\[
\mathcal{P}_{A\rightarrow B} = e^{\frac{1}{2}(S_A-S_B)},
\]

\[
\mathcal{P}_{A\rightarrow B} = (\mathcal{P}_{A\rightarrow B})_{\text{loc}} (\mathcal{P}_{A\rightarrow B})_{\text{glob}}.
\]
Detailed balance and probabilities

- Including local measure term: \(S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}} \)
- Detailed balance:
 \[
 \frac{p_{A \rightarrow B}}{p_{B \rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}},
 \]

- Metropolis accept probabilities:
 \[
 p_{A \rightarrow B} = \begin{cases}
 1 & \text{if } S_B < S_A \\
 e^{(S_A - S_B)} & \text{if } S_B > S_A
 \end{cases},
 \]

- Ponderances: credits to Walter Freeman
 \[
 \mathcal{P}_{A \rightarrow B} = e^{\frac{1}{2}(S_A - S_B)},
 \]

Use of ponderances allows to separate global and local part of the action.
Detailed balance and probabilities

- Including local measure term: \(S_{\text{tot}} = S_{\text{loc}} + S_{\text{glob}} \)
- Detailed balance:
 \[
 \frac{p_{A \rightarrow B}}{p_{B \rightarrow A}} = \frac{e^{-S_B}}{e^{-S_A}},
 \]
- Metropolis accept probabilities:
 \[
 p_{A \rightarrow B} = \begin{cases}
 1 & \text{if } S_B < S_A \\
 e^{(S_A - S_B)} & \text{if } S_B > S_A
 \end{cases}
 \]

- Ponderances: credits to Walter Freeman
 [Dai, Freeman, Laiho, MS, Unmuth-Yockey; to appear]
 \[
 \mathcal{P}_{A \rightarrow B} = e^{\frac{1}{2}(S_A - S_B)},
 \]

\[
\mathcal{P}_{A \rightarrow B} = (\mathcal{P}_{A \rightarrow B})_{\text{loc}} (\mathcal{P}_{A \rightarrow B})_{\text{glob}} .
\]

Use of ponderances allows to separate global and local part of the action.

Monte-Carlo time from weight ("dwell time"): \(\omega = \frac{1}{N \sum_{i=1}^{N} \mathcal{P}_{A \rightarrow B_i}} \).
Testing the new algorithm I

- Proof of principles: 2d Ising model
Testing the new algorithm I

• Proof of principles: 2d Ising model

• Simulate probability distribution of energy states at $T = 2$:

 $P_k(T) = \frac{g_k e^{-\frac{4 k J}{T}}}{\sum_{k=0}^{N} g_k e^{-\frac{4 k J}{T}}}$, with multiplicity g_k of states with energy $4k J$

Weight-accumulating Rejection-free algorithm reproduces correct distribution!
Testing the new algorithm I

- Proof of principles: 2d Ising model
- Simulate probability distribution of energy states at $T = 2$:

$$P_k(T) = \frac{g_k e^{-\frac{4kJ}{T}}}{\sum_{k=0}^{N} g_k e^{-\frac{4kJ}{T}}}$$

, with multiplicity g_k of states with energy $4Jk$

At low acceptance rate: significant speedup!
Preliminary results!

- 4d EDT: compare order parameters and lattice observables
- $\delta \Lambda$: unphysical parameter; stabilizes lattice volume and tunes κ_4
Preliminary results!

- 4d EDT: compare order parameters and lattice observables
- $\delta \Lambda$: unphysical parameter; stabilizes lattice volume and tunes κ_4

Metropolis and Rejection free algorithms seem to agree in physical limit $\delta \Lambda \to 0$
Preliminary results!

- 4d EDT: compare order parameters and lattice observables
- $\delta \Lambda$: unphysical parameter; stabilizes lattice volume and tunes κ_4

Some speedup, but plateau; Reason: higher connectivity.
Key object: the shelling function

- Shelling function $f(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.

- For de Sitter with $d_{\text{H}}=4$:

 \[f(\tau) \sim N_4 \frac{1}{4} \cos^3 \tau + \delta N_1 \frac{1}{4} \]

- Peak-height: order parameter of AB-transition

- Lattice volume profiles:⇒ scale in agreement with $d_{\text{H}}=4$⇒ approximate de Sitter profile better for finer lattices
Key object: the shelling function

- Shelling function $f(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.
- For de Sitter with $d_H = 4$:
 \[
 f(\tau) \sim N_4 \frac{1}{s_0 N_4^{1/4}} \cos^3 \left(\frac{\tau + \delta}{s_0 N_4^{1/4}} \right)
 \]
- Peak-height: order parameter of AB-transition
Key object: the shelling function

- Shelling function \(f(\tau) \): counts number of four-simplices at geodesic distance \(\tau \) away from source-simplex.
- For de Sitter with \(d_H = 4 \):
 \[
 f(\tau) \sim N_4 \frac{1}{s_0 N_4^{1/4}} \cos^3 \left(\frac{\tau + \delta}{s_0 N_4^{1/4}} \right)
 \]
- Peak-height: order parameter of AB-transition
- Lattice volume profiles:
 \(\Rightarrow \) scale in agreement with \(d_H = 4 \)

\[\kappa_2 = 3.8\]

\(\# \text{ of 4-simplexes} \)

\(\rho \)

credits to Mingwei Dai
Key object: the shelling function

- Shelling function $f(\tau)$: counts number of four-simplices at geodesic distance τ away from source-simplex.

- For de Sitter with $d_H = 4$:
 \[
 f(\tau) \sim N_4 \frac{1}{s_0 N_4^{1/4}} \cos^3 \left(\frac{\tau + \delta}{s_0 N_4^{1/4}} \right)
 \]

- Peak-height: order parameter of AB-transition

- Lattice volume profiles:
 - scale in agreement with $d_H = 4$
 - approximate de Sitter profile better for finer lattices

Credits to Mingwei Dai
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance

Fit:

$$f(\tau) = A \cos^3(B \tau + C)$$

- A: measures volume \Rightarrow units of a
- B: $\sim 1/\tau$ \Rightarrow units of ℓ

Scale factor for Euclidean de Sitter: $a_H = q_3 \Lambda \cos q_3 \Lambda 3 \tau$

Assume:

$$f(\tau) \sim (a_H)^3$$ \Rightarrow $a/\ell \sim 1/(A^{1/3}B^{3/4})$

Fit:

$$a/\ell = A + B V + C V^2$$

Example: "rather-fine" lattices: $a/\ell = 16.585(683)$
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance
- relevant quantities: a/ℓ and ℓ_{rel}

$$f(\tau) = A \cos^3(B\tau + C)$$

- A measures volume \Rightarrow units of a
- $B \sim 1/\tau \Rightarrow$ units of ℓ

Scale factor for Euclidean de Sitter:

$$aH = q^3 \Lambda \cos^3 q\Lambda^3 \tau$$

- Assume: $f(\tau) \sim (aH)^3 \Rightarrow a/\ell \sim 1/(A^{1/3} B^{3/4})$

- fit $a/\ell = A + B V + C V^2$

Example: "rather-fine" lattices: $a/\ell = 16.585(683)$

Credits to Mingwei Dai
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance
- relevant quantities: a/ℓ and ℓ_{rel}
- fit $f(\tau) = A \cos^3(B\tau + C)$

 A: measures volume \Rightarrow units of a
 B: $\sim 1/\tau \Rightarrow$ units of ℓ
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance
- relevant quantities: a/ℓ and ℓ_{rel}
- fit $f(\tau) = A \cos^3(B\tau + C)$
 A: measures volume \Rightarrow units of a
 B: $\sim 1/\tau \Rightarrow$ units of ℓ
- Scale factor for Euclidean de Sitter:
 $$a_H = \sqrt{\frac{3}{A}} \cos \left(\sqrt{\frac{A}{3}} \tau \right)$$
- Assume: $f(\tau) \sim (a_H)^3$
 $\Rightarrow \frac{a}{\ell} \sim \frac{1}{(A^{1/3}B)^{3/4}}$
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance
- relevant quantities: a/ℓ and ℓ_{rel}
- fit $f(\tau) = A \cos^3(B\tau + C)$
 A: measures volume \Rightarrow units of a
 B: $\sim 1/\tau$ \Rightarrow units of ℓ
- Scale factor for Euclidean de Sitter:
 $a_H = \sqrt{\frac{3}{A}} \cos \left(\sqrt{\frac{A}{3}} \tau \right)$
- Assume: $f(\tau) \sim (a_H)^3$
 $\Rightarrow \frac{a}{\ell} \sim \frac{1}{(A^{1/3}B)^{3/4}}$

- fit $\frac{a}{\ell} = A + \frac{B}{V} + \frac{C}{V^2}$
EDT lattice spacings: a/ℓ

- a: lattice spacing; edge length
- ℓ: dual lattice spacing; simplex distance
- relevant quantities: a/ℓ and ℓ_{rel}
- fit $f(\tau) = A \cos^3(B\tau + C)$
 A: measures volume \Rightarrow units of a
 B: $\sim 1/\tau$ \Rightarrow units of ℓ
- Scale factor for Euclidean de Sitter:
 $$a_H = \sqrt{\frac{3}{A}} \cos\left(\sqrt{\frac{A}{3}}\tau\right)$$
- Assume: $f(\tau) \sim (a_H)^3$
 $\Rightarrow \frac{a}{\ell} \sim \frac{1}{(A^{1/3}B)^{3/4}}$

- fit $\frac{a}{\ell} = A + \frac{B}{V} + \frac{C}{V^2}$
- Example: "rather-fine" lattices:
 $$\frac{a}{\ell} = 16.585(683)$$

credits to Mingwei Dai
Determining absolute and relative lattice spacings

\[\langle N^4 \rangle \approx k^2 4(\kappa^4 - \kappa_c^4)^2 \Rightarrow k = |\kappa^4 - \kappa_c^4|^{1/4} N^4. \]

Use finite-volume scaling of \(\kappa^4 \) to test recovery of semi-classical limit

Match lattice saddle point approximation with continuum calculation:

\[Z(\kappa_2^2, \kappa_4^2) \approx \exp k^2 4(\kappa^4 - \kappa_c^4) \]

Assumption: Continuum is dominated by de Sitter instanton [Hawking, Moss, 1987]

Extract \(G \) from lattice data:

\[G_{\ell^2, \text{fid}} \sim a_{\ell^2} 2_{\ell^2, \text{rel}} |s|, \]
Determining absolute and relative lattice spacings

• Saddle point approximation:
 \[\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4} . \]

Use finite-volume scaling of \(\kappa_4 \) to test recovery of semi-classical limit
• Saddle point approximation:

\[\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_c^4)^2} \Rightarrow k = |\kappa_4 - \kappa_c^4| \sqrt{N_4}. \]

Use finite-volume scaling of \(\kappa_4 \) to test recovery of semi-classical limit

• Match lattice saddle point approximation with continuum calculation:

\[Z(\kappa_2, \kappa_4) \approx \exp \left(\frac{k^2(\kappa_2)}{4(\kappa_4 - \kappa_c^4)} \right) = \exp \left(\frac{3\pi}{G \Lambda} \right) \]

Assumption: Continuum is dominated by de Sitter instanton \[\text{[Hawking, Moss, 1987]}\]
Determining absolute and relative lattice spacings

• Saddle point approximation:
 [Ambjorn, Goerlich, Jurkiewicz, Loll, 2012]

\[\langle N_4 \rangle \simeq \frac{k^2}{4(\kappa_4 - \kappa_4^c)^2} \Rightarrow k = |\kappa_4 - \kappa_4^c| \sqrt{N_4}. \]

Use finite-volume scaling of \(\kappa_4 \) to test recovery of semi-classical limit

• Match lattice saddle point approximation with continuum calculation:

\[Z(\kappa_2, \kappa_4) \approx \exp \left(\frac{k^2(\kappa_2)}{4(\kappa_4 - \kappa_4^c)} \right) = \exp \left(\frac{3\pi}{G \Lambda} \right) \]

Assumption: Continuum is dominated by de Sitter instanton [Hawking, Moss, 1987]

Extract \(G \) from lattice data:

\[\frac{G}{\ell_{\text{fid}}^2} \sim \left(\frac{a}{\ell} \right)^2 \frac{\ell_{\text{rel}}^2}{|s|}. \]
Numerical result: finite volume scaling

Example at $\beta = -0.575$, $\kappa_2 = 2.245$:

![Graph showing finite volume scaling](image)

Extract slope s: $\kappa_4(N_4) = A + s \frac{1}{\sqrt{N_4}}$
Fit result: $s = -0.268 \pm 0.011$
$\chi^2/d.o.f = 0.82$.
Numerical result: the Newton coupling

- Extract slope for all ensembles
- Compute G for each of the ensembles

At given lattice spacing, perform infinite volume extrapolation:

$$G = H_G V + I_G V^2 + G_0,$$

- Fine lattices: $G_0 = 64.4 \pm 4.4; \chi^2/d.o.f = 0.81 \Rightarrow \ell_{\text{fine}} \approx 0.125 \ell_{\text{Planck}}$
- Medium-Fine lattices: $G_0 = 30 \pm 20; \chi^2/d.o.f = 0.22 \Rightarrow \ell_{M\text{fine}} \approx 1.79 \ell_{\text{fine}}$

ℓ_{rel} for finer lattices: WIP; computationally intense; Marc Schiffer, Perimeter Institute
Numerical result: the Newton coupling

- Extract slope for all ensembles
- Compute G for each of the ensembles
- At given lattice spacing, perform infinite volume extrapolation:

$$G = \frac{H_G}{V} + \frac{I_G}{V^2} + G_0,$$

Fine lattices: $G_0 = 64.4 \pm 4.4$; $\chi^2 / d.o.f = 0.81 \Rightarrow \ell_{fine} \approx 0.125 \ell_{Planck}$

Medium-Fine lattices: $G_0 = 30 \pm 20$; $\chi^2 / d.o.f = 0.22 \Rightarrow \ell_{Mfine} \approx 1.79 \ell_{fine}$

ℓ_{rel} for finer lattices: WIP; computationally intense; Marc Schiffer, Perimeter Institute
Numerical result: the Newton coupling

- Extract slope for all ensembles
- Compute G for each of the ensembles
- At given lattice spacing, perform infinite volume extrapolation:
 \[G = \frac{H_G}{V} + \frac{I_G}{V^2} + G_0, \]
- Fine lattices:
 \[G_0 = 64.4 \pm 4.4; \quad \chi^2/d.o.f = 0.81 \]
 \[\Rightarrow \ell_{\text{fine}} \approx 0.125 \ell_{\text{Planck}} \]
Numerical result: the Newton coupling

- Extract slope for all ensembles
- Compute G for each of the ensembles
- At given lattice spacing, perform infinite volume extrapolation:

$$G = \frac{H_G}{V} + \frac{I_G}{V^2} + G_0,$$

- Fine lattices:
 $G_0 = 64.4 \pm 4.4$; χ^2/d.o.f = 0.81
 $\Rightarrow \ell_{\text{fine}} \approx 0.125 \ell_{\text{Planck}}$
- Medium-Fine lattices:
 $G_0 = 30 \pm 20$; χ^2/d.o.f = 0.22
 $\Rightarrow \ell_{\text{Mfine}} \approx 1.79 \ell_{\text{fine}}$

$$\frac{G}{\ell_{\text{fid}}^2} \sim \left(\frac{a}{\ell} \right)^2 \frac{\ell_{\text{rel}}^2}{|s|},$$
Numerical result: the Newton coupling

- Extract slope for all ensembles
- Compute G for each of the ensembles
- At given lattice spacing, perform infinite volume extrapolation:
 \[G = \frac{H_G}{V} + \frac{I_G}{V^2} + G_0, \]
- Fine lattices:
 \[G_0 = 64.4 \pm 4.4; \quad \chi^2/d.o.f = 0.81 \]
 \[\Rightarrow \ell_{\text{fine}} \approx 0.125 \ell_{\text{Planck}} \]
- Medium-Fine lattices:
 \[G_0 = 30 \pm 20; \quad \chi^2/d.o.f = 0.22 \]
 \[\Rightarrow \ell_{\text{Mfine}} \approx 1.79 \ell_{\text{fine}} \]
Summary & Conclusion

- New algorithm: more and finer lattices
- Lattice geometries: resemble semi-classical de Sitter space with $d_H \approx 4$
- Extract a/ℓ from de Sitter volume profile
- Extract absolute and relative lattice spacing from semi-classical approximation

Stay tuned!

[Mingwei Dai, today 4:20 pm, WH3NE]

[Jack Laiho, today 4:40 pm, WH3NE]
Summary & Conclusion

- New algorithm: more and finer lattices
- Lattice geometries: resemble semi-classical de Sitter space with $d_H \approx 4$
- Extract a/ℓ from de Sitter volume profile
- Extract absolute and relative lattice spacing from semi-classical approximation
- Improve parallelization to deal with high connectivity
- Finer lattices and larger volumes to determine a/ℓ and ℓ_{rel} more precisely
Summary & Conclusion

- New algorithm: more and finer lattices
- Lattice geometries: resemble semi-classical de Sitter space with $d_H \approx 4$
- Extract a/ℓ from de Sitter volume profile
- Extract absolute and relative lattice spacing from semi-classical approximation
- Improve parallelization to deal with high connectivity
- Finer lattices and larger volumes to determine a/ℓ and ℓ_{rel} more precisely

Stay tuned!

[Mingwei Dai, today 4:20 pm, WH3NE]
[Jack Laiho, today 4:40 pm, WH3NE]
Summary & Conclusion

• New algorithm: more and finer lattices
• Lattice geometries: resemble semi-classical de Sitter space with $d_H \approx 4$
• Extract a/ℓ from de Sitter volume profile
• Extract absolute and relative lattice spacing from semi-classical approximation
• Improve parallelization to deal with high connectivity
• Finer lattices and larger volumes to determine a/ℓ and ℓ_{rel} more precisely

Stay tuned!

[Mingwei Dai, today 4:20 pm, WH3NE]
[Jack Laiho, today 4:40 pm, WH3NE]

Thank you for your attention!