
Computation of Relativistic Corrections to the Static Potential
from Generalized Wilson Loops at Finite Flow Time

Michael Eichberg, eichberg@itp.uni-frankfurt.de
in collaboration with

Marc Wagner, Nora Brambilla, Julian Mayer-Steudte and Xiangpeng Wang

Institut für theoretische Physik, Goethe Universität Frankfurt

Helmholtz Forschungszentrum Hessen für FAIR

FERMILAB, 03.08.2023

1/11



2/11

Motivation Results Conclusions

Motivation

V (r) =V (0)(r) +
1
m
V (1)(r) +

1
m2 (VSD(r) + VSI(r)) +O(1/m3)

[Eichten, Feinberg, 1981], [Barchielli et al. 1988], [Pineda, Vairo, 2001], [Brambilla, 2022]

Corrections well understood in perturbation theory,
but results from lattice QCD incomplete. [Bali,
Schilling, Wachter, 1997], [Koma, Koma, 2007]

Problems are UV-noise and renormalization, both
can be solved with gradient flow (cf. parallel talk by
Julian Mayer-Steudte, Tue 3:10 PM).
Analogous expressions recently derived for hybrid
potentials [Brambilla et al. 2020].

https://inspirehep.net/literature/155782
https://inspirehep.net/literature/233192
https://arxiv.org/abs/hep-ph/0009145v3
https://arxiv.org/abs/2204.11295
http://arxiv.org/abs/hep-lat/9703019
http://arxiv.org/abs/hep-lat/9703019
http://arxiv.org/abs/hep-lat/0609078
https://arxiv.org/abs/1908.11699


3/11

Motivation Results Conclusions

Potentials

Potentials are computed using correlators ⟨⟨...⟩⟩ = ⟨...⟩W /⟨1⟩W ⇒ V0 (in particular Vself(µ)
does not appear in resulting spectrum).

Vp2 =
1
2
{
p2, (I2(Ez(t, 0)Ez(0, 0)) + I2(Ez(t, r)Ez(0, 0)))

}
,

VLS =ϵijz
cF (µ)

2r
(2I1(Bi (t, 0)Ej(0, 0)) + I1(Bi (t, r)Ej(0, 0))) L̂Ŝ,

VS2 =
2c2

F (µ)

3

∑
i

(I0(Bi (t, r)Bi (0, 0))) (Ŝ1Ŝ2), . . .

where

In(F2(t, r2)F1(0, r1)) = lim
T→∞

∫ T

0
dt tn ⟨⟨g2F2(t, r2)F1(0, r1)⟩⟩(c)

r = (0, 0, r); cF (µ): Matching coefficient for
B-insertions; n = 0, 1, 2.

Generalized Wilson loop
⟨F2(t)F1(0)⟩W :
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Gradient Flow

Lattice-Fµν requires renormalization, e.g. clover
definition Fµν = (Πµν − Π†

µν)/2 via
F̄µν = (Πµν +Π†

µν)/2 (Huntley-Michael).
Flow equation:

Ḃµ =DνGµν , Bµ|t=0 = Aµ,

Gµν =∂µBν − ∂νBµ + [Bµ,Bν ], Dµ = ∂µ + [Bµ, ·]

Fields at flow time tf > 0 are smooth and
renormalized [Lüscher, 2010].
Related flow radius is rf =

√
8tf .

https://arxiv.org/abs/1006.4518v3
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Differences for gradient flow

Insertions without gradient flow:
- Small signal-to-noise ratio due to UV-fluctuations.
- Renormalization is tricky, poor continuum

convergence.
- B-insertions log-divergent in µ.

In gradient flow:
+ UV-fluctuations effectively suppressed.
+ Additional renormalization of insertions not

necessary if flow radius rf /a > 1.
+ Divergencies regulated by tf .
- Unpredictable behaviour of large rf , complicated to

handle.

Find the best compromise: Use flow times large enough to make precise measurements,
while keeping rf small compared to separations.
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Closer look at the Correlator Spectrum

⟨⟨F2(t)F1(0)⟩⟩ = lim
∆t→∞

⟨F2(t)F1(0)⟩W
⟨1⟩W

=
∑
Λϵ
η

⟨Σ+
g | F̂1|Λϵ

η⟩ ⟨Λϵ
η|F̂2 |Σ+

g ⟩ e
−∆EΛϵη

t
,

with ∆EΛϵ
η
= EΛϵ

η
− EΣ+

g
, where Λϵ

η can be:
Λϵ
η ⟨⟨F2(t)F1(0)⟩⟩a

Σ+
g ,u ⟨⟨Ez(t)Ez(0)⟩⟩

Σ−
g ,u ⟨⟨Bz(t)Bz(0)⟩⟩

Πg ,u ⟨⟨Ex,y (t)Ex,y (0)⟩⟩,
⟨⟨Bx,y (t)Ey ,x(0)⟩⟩,
⟨⟨Bx,y (t)Bx,y (0)⟩⟩

ar = (0, 0, r)

⇒ Group correlators for combined fits - Integrate fits analytically.
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Lattice ensembles

Simulation: SU(3) heatbath with CL2QCD.
Wilson flow with adaptive step size.
Whole Wilson loop, including insertions
(clover definition), flowed.
APE-smearing for ground state
enhancement used.
Statistical errors propagated via
pyerrors.

Table: Lattice ensembles used for the computation
(black), or planned (grey) - Results will be shown
for β = 6.451.

β T/a L/a a [fm] # confs.
6.091 36 18 0.08 20000
6.284 48 24 0.06 10000
6.451 60 30 0.048 2000
6.594 72 36 0.04 800
6.816 96 48 0.03 –

https://gitlab.itp.uni-frankfurt.de/lattice-qcd/ag-philipsen/cl2qcd
https://fjosw.github.io/pyerrors/pyerrors.html
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Static potential

4 6 8 10 12 14
r/a

0.000

0.025

0.050

0.075

0.100

0.125

0.150

a
(V

(0
) (r

)
V

(0
) (r

=
5a

))

tf/a2 = 0.416667
tf/a2 = 0.555556
tf/a2 = 0.666667
tf/a2 = 0.777778

Figure: Consistency check: Static potential for a = 0.048 fm, normalized with V0(r/a = 5), at different
flow times.
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Noise reduction

Figure: Mean values and errors for different ⟨⟨F2(t)F1(0)⟩⟩ as function of tf /a2 for a = 0.048 fm,
r/a = 8 and various t/a.
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Spin-Potentials and V
(1,1)
p2

Preliminary

a = 0.048 fm, tf /a2 = 0.778.
Fit ansätze from models, to
be replaced with matching to
pNRQCD (continuum limit).
c2 ≈ c3 ≈ c4 ≈ c =
0.3002(33) and
σ1 ≈ σ = 0.012227(86)
(Cornell parameters), good
agreement with models.
σ2 ̸= 0 surprising, possibly
overestimation of integrals at
large r .



11/11

Motivation Results Conclusions

Conclusions

Summary
O(1/m2)-corrections to the static potential have
been computed at several lattice spacings and finite
tf for distances up to ∼ 0.5 fm.
Significant reduction of noise of correlators.
Potential results are very close to expectations,
possibly due to renormalization.
Difficult to get integral values from fitting.

Outlook
Try out alternative to fitting, e.g. determine hybrid
energies and directly compute respective amplitudes.
Find continuum and zero-flow-time limit.
Access smaller min. separations < 0.2 fm and match
with perturbation theory.

Thank you for your attention!
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Correlators
Preliminary

Figure: Correlators where integral is weighted with t or t2 for a = 0.048 fm and tf /a
2 = 0.778. Grey

lines indicate where separation surpasses 2rf .
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