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Introduction



Motivation

• the axial-vector properties of nucleon states are relevant for

neutrino-nucleus scattering events, like e.g. in the DUNE detectors

• one relevant process in the quasi-elastic region (Eν ≈ 1 GeV)

νℓn → ℓ−p and ν̄ℓp → ℓ+n

Source: J. A. Formaggio and G. P. Zeller Rev. Mod. Phys. 84, 1307
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Axial vector current and nucleon axial charge

n p

νe e−

• axial-vector current〈
P(p′)|A+

µ |N (p)
〉
= ū(p′)

(
γµγ5GA(Q

2)− iγ5
Qµ

2MN
G̃P(Q

2)

)
d(p),

with the form factors GA(Q
2) and G̃P(Q

2)

• nucleon axial charge

gA = GA(Q
2 = 0)

• from Ultracold Neutron experiments: gA = 1.2772(20) (UCNA)
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Axial-Vector current on the Lattice

• axial-vector form factor of nucleon is in general a non-perturbative quantity

• Lattice QCD offers a way for calculations from First Principles

• one particular challenge: on lattice nucleon-pion state and nucleon state

can have the same quantum numbers

• Chiral PT predicts a significant nucleon-pion contribution nucleon form

factors (O. Bär Phys.Rev.D 101 (2020) 3, 034515)
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gA Lattice-Overview

• gA Lattice computations since 2020:

1.20 1.25 1.30 1.35 1.40

gA

UCNA (exp)

CalLat20

ETMC20

NME21

Mainz22

PACS22

PMDME23

RQCD23

QCDSF/UKQCD/CSSM23

• in this comparison we neglect possible QED corrections for the lattice

computations
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Nπ interpolating operators

• Idea: use Nπ interpolating operators to increase the variational basis (L.

Barca et.al., Phys.Rev.D 107 (2023) 5 )

• Goal: study finite-volume nucleon-pion states to scrutinize excited state

systematics
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Setup



Ensembles
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ensemble for this talk

• new RBC/UKQCD ensembles for g − 2 project, combined with single

physical pion mass ensemble (48I)
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Ensemble for this talk

• Iwasaki gauge action with β = 2.13

• 2+1 valence and sea Domain-Wall quarks

• a−1 = 1.74 GeV

• lattice size: 243 × 48× 24

• mπ = 279 MeV

• mK = 534 MeV

• mπL = 3.84

• b + c = 2

• mres = 6.2× 10−4

7 / 18



Nucleon Spectrum



Nucleon interpolation operators

• standard proton interpolation operator

Pµ(x) = εabcu
a
ν(x)u

b
β(x) (Cγ5)βγ d

c
γ(x)

• we use Coulomb gauge-fixed wall and Z3-box sources with point sink

• nucleon two-point function

C2pt(t) =
∑

x

〈
Pν(x , t)P†

µ(0)
〉
P+
µν

• parity projection operator

P+ =
1

2
(1+ γ3)

• usage of all-mode-averaging (one exact and 48 sloppy time slice)
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Nucleon-pion interpolating operator

p

π+

n

• at sink replace proton with neutron-pion operator

Nπp
µ↑(t) = Nµ↓(p, t)π+(−p, t)−Nµ↓(−p, t)π+(p, t)

• neutron and pion operator are each point-like

• we use a sequential propagator to include the pion

• internal momentum p ̸= 0 necessary for positive parity

• in the following, p = 2π
L
êx

• use Coulomb gauge-fixed wall source with standard proton operator

• proton at source is isospin and G1 projected
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Effective masses and constrained fits

• result of a lot of experimentation (GEVP, Matrix Prony, different ways to

compute the effective mass curve)

• computation of the effective mass curve using

ameff(t) = −1

n
log

(
C(t + an)

C(t)

)
• constrained fit: each effective mass curve is simultaneously fitted against

ameff(t) = aMN + γi
1− e−an∆E

n
e−a∆Et

• in the following, we use n = 3
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Constrained fit
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aMN = 0.6280(35)

aMN ′ = 1.120(23)

γwN = −0.194(73)

γwNπ = −1.03(10)

γbN = 5.23(33)

N b6 → Np

Nw → Np

Nw → Nπp

constrained fit

p: point-like w : gauge-fixed wall bk : gauge-fixed Z3-Box of size k

• χ2/dof = 1.23 and p = 0.22

• difference between γw
N and γw

Nπ indicates the effect of the nucleon-pion

operator
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Nucleon Axial Charge (Preliminary)



Computation of gA

p(p′, 0)

A−
µ (q, τ)

n(p, t)

• we need additionally a 3-point function with inserted vector-axial current

Cj,↑/↓
µ,3pt (t, p, τ, q) =

〈
Nα(p, t)A−

µ (q, τ)P†
β(p

′, 0)
〉(

P+P
↑/↓
j

)
βα

• parity projection P+ and spin projection

P
↑/↓
j =

1

2
(1± iγ5γj)

• axial-vector insertion A−
µ (x) = d̄(x)γµγ5u(x) for q = 0
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Computation of gN
A

• non-renormalized nucleon axial charge g̃N
A can be obtained from the ratios

(analog to CalLat: Phys. Rev. C 105, 065203 (2022))

RAj

j (t, τ) = −i
Cj
j,3pt(t, p = 0, τ, q = 0)

C2pt(t)

=

ground state︷︸︸︷
g̃N
A +

excited state︷ ︸︸ ︷
(g̃N′

A − g̃N
A )rpr

⋆
we

−∆Et

+ g̃N→N′
A

(
r⋆we

−∆Eτ + rpe
−∆E(t−τ)

)
︸ ︷︷ ︸

exchange

+ . . . ,

with

• g̃N′
, g̃N→N′

further matrix elements of axial-vector current

• rp and r⋆w the normalized overlap with the point-like nucleon at sink and

wall proton at source

• with the axial-vector renormalization constant ZA we can renormalize the

axial charge

gA = ZAg̃A
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Constrained fit for gN
A determination

• we make a constrained fit of

• the ratio data RA0
0 (t, τ) for τ/a = 3, 4, 5, 6 and t/a = 8, 9, 10 against

RAj

j (t, τ) = gN
A + (gN′

A − gN
A )rpr

⋆
w e

−∆Et + gN→N′
A

(
r⋆w e

−∆Eτ + rpe
−∆E(t−τ)

)
• the effective mass curve of the 2-point correlation function

ameff,3 = − 1
3
log

C2pt (t+3a)

C(t)
against

ameff(t) = aMN + rpr
⋆
w
1− e−3a∆E

3
e−∆Et

• we use ∆E = MN′ −MN

• in total 7 independent real fit parameter: gN
A , gN′

A , gN→N′
A , rp, r

⋆
w ,MN ,MN′
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Preliminary results for the axial charge

p(0)

A−
µ (τ)

n(t)

constrained fit results:

• gN
A = 1.143(20) (1.71%)

• aMN = 0.6297(43) (0.69%)

• aMN′ = 1.042(77) (7.41%)
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Comparison: Constrained mass and axial charge fits

• Compare the constrained axial charge fit (CAF) and constrained mass fit

(CMF)

CMF CAF

aMN 0.6280(35) 0.6297(43)

aM ′
N 1.120(23) 1.042(77)

gN
A 1.143(20)

0.625 0.630 0.635

aMN

CMF

CAF

1.0 1.1

aMN ′

• energies obtained from CMF and CAF are consistent
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Summary and Outlook



Summary
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γwNπ = −1.03(10)

γbN = 5.23(33)

N b6 → Np

Nw → Np

Nw → Nπp

constrained fit

• nucleon-pion operator enhances coupling to excited state

• constrained fits of 2-point and 3-point functions give stable and coherent

estimates

• we obtain consistent energies for constrained axial charge and mass fits
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Outlook
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ensemble for this talk

• further analysis of the nucleon axial-vector current on the ensemble of this
talk:

• include nucleon-pion operator in 3-point function

• more statistic

• expand the analysis to the other ensembles

• Final goal: Determination of nucleon axial charge and other quantities in

the continuum and for physical pion mass with full error budget
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Backup slides



Comparison with smeared source
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smearing parameter:

• Gauss smearing

• Wilson flowed gauge fields, Nwf = 100, εwf = 0.01

• σ = 2.0, N = 5



Spectrum constrained fit (fit range analysis)
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Spectrum constrained fit (fit range analysis)
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Spectrum constrained fit (fit range analysis)
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Excited states

• on the lattice there are multiple types of states with the same quantum
number as the nucleon state:

1. excited states of the nucleon

2. nucleon-pion states with different momentum configurations

3. nucleon-pion-pion states with different momentum configurations

• we identify the multi-particle states with the free particle approximation,

e.g., the nucleon-pion states with

MNπ =
√

M2
N + p2

N +
√

M2
π + p2

π



Excited states
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aE

relevant Nπ and Nππ finite volume spectrum

N ′ (from fit)

Nπ

Nππ

• L = 2.73 fm, mπ = 279 MeV and a−1 = 1.74 GeV

• excited state fit is combination of multiple excited states

• the spectrum gets more dense in the infinite volume limit



Fit range analysis for gA-Fit
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