2023
 LAIICE

The 40th International Symposium on Lattice Field Theory Fermilab

31 st Jul - 4th Aug 2023

OUTLINE

Q Motivations

- Leptonic decays of pseudoscalar mesons $H \rightarrow \ell \nu_{\ell} \gamma$

O Outlook

In collaboration with
C. F. Kane, C. Lehner, S. Meinel and A. Soni
(mainly based on: arXiv:2302.01298 published this year in PRD)

Phenomenological motivations

Radiative corrections to leptonic B-meson decays

$B^{-} \rightarrow \ell^{-} \bar{\nu}_{e \gamma}$

The emission of a real hard photon removes the $\left(m_{\ell} / M_{B}\right)^{2}$ helicity suppression
This is the simplest process that probes (for large E_{γ}) the first inverse moment of the B-meson LCDA

$$
\frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} \frac{d \omega}{\omega} \Phi_{B+}(\omega, \mu)
$$

λ_{B} is an important input in QCD-factorization predictions for non-leptonic B decays but is poorly known
M. Beneke,V. M. Braun, Y. Ji, Y.-B.Wei, 20 I 8

$$
\text { Belle 2018: } \mathscr{B}\left(B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell} \gamma, E_{\gamma}>1 \mathrm{GeV}\right)<3.0 \cdot 10^{-6} \quad \longrightarrow \quad \lambda_{B}>0.24 \mathrm{GeV}
$$

QCD sum rules in HQET: $\lambda_{B}(1 \mathrm{GeV})=0.46(11) \mathrm{GeV}$
$B_{q} \rightarrow \ell^{+} \ell^{-(}(\gamma)$

Enhancement of the virtual corrections by a factor $M_{B} / \Lambda_{Q C D}$ and by large logarithms M. Beneke, C. Bobeth, R. Szafron, 2019

The real photon emission process is a clean probe of NP: sensitiveness to C_{9}, C_{10}, C_{7}

Lattice calculation of

$H \rightarrow \ell \nu_{e} \gamma$

PHYSICAL REVIEW D 107, 074507 (2023)

arXiv:2302.01298

Methods for high-precision determinations of radiative-leptonic decay form factors using lattice QCD

Davide Giusti๑, ${ }^{1}$ Christopher F. Kane $\odot,{ }^{2}$ Christoph Lehner, ${ }^{1}$ Stefan Meinel $\odot,{ }^{2}$ and Amarjit Soni ${ }^{3}$
${ }^{1}{ }^{1}$ Fakultät für Physik, Universität Regensburg, 93040, Regensburg, Germany
${ }^{2}$ Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
${ }^{3}$ Brookhaven National Laboratory, Upton, New York 11973, USA(Received 9 February 2023; accepted 21 March 2023; published 19 April 2023)

Hadronic tensor and form factors

$$
\phi_{H}^{\dagger}=-\bar{q}_{2} \gamma_{5} q_{1}
$$

$$
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \overrightarrow{\mathbf{p}}_{\gamma} \cdot \overrightarrow{\mathbf{x}}} e^{i \overrightarrow{\mathbf{p}}_{H} \cdot \overrightarrow{\mathbf{y}}}\left\langle J_{\mu}^{\text {em }}\left(t_{e m}, \overrightarrow{\mathbf{x}}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \overrightarrow{\mathbf{y}}\right)\right\rangle
$$

safe analytic continuation from Minkowsky to Euclidean spacetime, because of the absence of intermediate states lighter than the pseudoscalar meson C. F. Kane et al., arXiv:1907.00279, RM123 \& Soton Coll., arXiv:2006.05358

$$
\begin{aligned}
& T_{\mu \nu}=-i \int d^{4} x e^{i p_{\gamma^{\prime}} \cdot x}\langle 0| \mathbf{T}\left(J_{\mu}^{e m}(x) J_{\nu}^{\text {weak }}(0)\right)\left|H\left(\vec{p}_{H}\right)\right\rangle \quad\left(p_{H}=m_{H} v\right) \\
& =\varepsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} \nu^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{H} f_{H}+\left(p_{\gamma}\right)_{\mu}-\text { terms } \\
& F_{A}=F_{A, S D}+\left(-Q_{\ell} f_{H} / E_{\gamma}^{(0)}\right), \quad E_{\gamma}^{(0)}=p_{\gamma} \cdot v \\
& \text { Goal: Calculate } F_{V}, F_{A, S D} \text { as a function of } E_{\gamma}^{(0)}
\end{aligned}
$$

Euclidean correlation function

$$
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \overrightarrow{\mathbf{p}}_{\gamma} \cdot \overrightarrow{\mathbf{x}}} e^{i \mathbf{p}_{H} \cdot \overrightarrow{\mathbf{y}}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \overrightarrow{\mathbf{x}}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \overrightarrow{\mathbf{y}}\right)\right\rangle
$$

$$
\begin{aligned}
& I_{\mu \nu}^{<}\left(T, t_{H}\right)=\int_{-T}^{0} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right) \\
& I_{\mu \nu}^{>}\left(T, t_{H}\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)
\end{aligned}
$$

Time ordering: $t_{e m}>0$

$$
T_{\mu \nu}^{>}=-\sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right\rangle\left\langle n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|H\left(\overrightarrow{\mathbf{p}}_{H}\right)\right\rangle}{2 E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\left(E_{\gamma}-E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\right)}
$$

$$
I_{\mu \nu}^{>}\left(t_{H}, T\right)=\int_{0}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{\mu \nu}\left(t_{e m}, t_{H}\right) \quad t_{H} \rightarrow-\infty \text { to achieve }
$$

$$
=-\sum_{m} e^{E_{m} t_{H}} \frac{\left\langle m\left(\overrightarrow{\mathbf{p}}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{m, \overrightarrow{\mathbf{p}}_{H}}} \quad \text { ground state saturation }
$$

$$
\times \sum_{n} \frac{\langle 0| J_{\mu}^{e m}(0)\left|n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right\rangle\left\langle n\left(\overrightarrow{\mathbf{p}}_{\gamma}\right)\right| J_{\nu}^{\text {weak }}(0)\left|m\left(\overrightarrow{\mathbf{p}}_{H}\right)\right\rangle}{2 E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\left(E_{\gamma}-E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\right)}\left[1-e^{\left(E_{\gamma}-E_{n, \overrightarrow{\mathbf{p}}_{\gamma}}\right) T}\right]
$$

Calculating $I_{\mu \nu}\left(T, t_{H}\right)$

$$
T_{\mu \nu}=\lim _{T \rightarrow \infty t_{H} \rightarrow-\infty} \lim _{\left\langle{ }^{2}\right.} \frac{-2 E_{H} e^{-E_{H} t_{H}}}{\left\langle H\left(\overrightarrow{\mathbf{p}}_{H}\right)\right| \phi_{H}^{\dagger}|0\rangle} \underbrace{\int_{-T}^{T} d t_{e m} e^{E_{\gamma} t_{e m}} C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)}_{I_{\mu \nu}\left(T, t_{H}\right)}
$$

Two methods to calculate $I_{\mu \nu}\left(T, t_{H}\right)$:
1: 3d (timeslice) sequential propagator through $\phi_{H}^{\dagger} \rightarrow$ calculate $C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)$ on lattice, fixed t_{H} get all $t_{e m}$ for free arXiv:1907.00279 \& arXiv:2110.13196

2: 4d sequential propagator through $J_{\mu}^{e m}$ \rightarrow calculate $I_{\mu \nu}\left(T, t_{H}\right)$ on lattice, fixed T get all t_{H} for free

RM123 \& Soton Coll., arXiv:2006.05358: Set $T=N_{T} / 2$ and fit

to constant in t_{H} where data has plateaued

> Number of propagator solves:

Source	3 d	4 d
point	$2\left(1+N_{t_{H}} N_{p_{H}}\right)$	$2\left(1+4 N_{T} N_{p_{\gamma}}\right)$
\mathbb{Z}_{2} wall	$2\left(1+N_{t_{H}} N_{p_{H}}+N_{p_{H}} N_{p_{\gamma}}\right)$	$2\left(1+4 N_{T} N_{p_{\gamma}}+N_{p_{\gamma}} N_{p_{H}}\right)$

Simulation details

$N_{f}=2+1$ DWF, 3 RBC/UKQCD gauge ensembles

ensemble	$(L / a)^{3} \times(T / a)$	L_{5} / a	$\approx a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$\approx M_{\pi}(\mathrm{MeV})$	$N_{\text {conf }}$
24I	$24^{3} \times 64$	16	1.785	0.005	0.04	340	25
32I	$32^{3} \times 64$	16	2.383	0.004	0.03	304	26
48I	$48^{3} \times 96$	24	1.730	0.00078	0.0362	139	7

charm valence quarks \longrightarrow Möbius DW with "stout" smearing
\mathbb{Z}_{2} random wall sources \& randomly placed point sources
Two datasets: $J^{\text {weak }}(0)$ or $J^{e m}(0)$

Method	Source	Meson Momentum	Photon Momentum
3d	\mathbb{Z}_{2}-wall	$\vec{p}_{D_{s}}=(0,0,0)$	$\left\|\vec{p}_{\gamma}\right\|^{2} \in(2 \pi / L)^{2}\{1,2,3,4\}$
3d	point	$p_{D_{s}, z} \in 2 \pi / L\{0,1,2\}$	all
4 d	\mathbb{Z}_{2}-wall	$p_{D_{s}, z} \in 2 \pi / L\{-1,0,1,2\}$	$p_{\gamma, z}=2 \pi / L$
$4 \mathrm{~d}^{+,<}$	\mathbb{Z}_{2}-wall	$p_{D_{s}, z} \in 2 \pi / L\{-1,0,1,2\}$	$p_{\gamma, z}=2 \pi / L$

Local electromagnetic current + mostly non-perturbative RCs
Disconnected diagrams are neglected

For point sources use translational invariance to fix em/weak operator at $\mathbf{0}$
use an "infinite-volume approximation" to generate data for arbitrary photon momenta (only exp. small FVEs are introduced)

$$
C_{3, \mu \nu}=\int d^{3} x \int d^{3} y e^{-i \vec{p}_{r} \cdot \vec{x}}\left\langle J_{\mu}^{\text {em }}\left(t_{e m}, \vec{x}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle \quad \vec{p}_{H}=0, \text { several } \vec{p}_{\gamma}
$$

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form factors F_{V} and $F_{A, S D}$ directly instead of $I_{\mu \nu}$
Time ordering $t_{e m}<0$:

$$
F^{<}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}(1+B_{F, \text { exc }}^{<} \overbrace{e^{\Delta E\left(T+t_{H}\right)}}) \overbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}+C_{F}^{<} \overbrace{e^{\Delta E t_{H}}}
$$

Fit form: 4d method

Use fit ranges where data has plateaued in t_{H}, i.e. $t_{H} \rightarrow-\infty$
Include terms to fit
(1) unwanted exponential from first intermediate state

Sum of both time orderings $I_{\mu \nu}\left(T, t_{H}\right)=I_{\mu \nu}^{<}\left(T, t_{H}\right)+I_{\mu \nu}^{>}\left(T, t_{H}\right)$

$$
F\left(t_{H}, T\right)=F+B_{F}^{<} \underbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}}_{t_{e m}<0}+B_{F}^{>} \underbrace{e^{\left(E_{\gamma}-E^{>}\right) T}}_{t_{e m}>0}
$$

Limitation of 4d method: the two different time orderings of $I_{\mu \nu}\left(t_{H}, T\right)$ cannot be resolved

$$
\underline{4 d^{>},<} \text {method }
$$

performing two sequential solves through the em current

$D_{s} \rightarrow \ell \nu_{\ell} \gamma: 3 \mathrm{~d}$ vs 4 d analysis results

$$
x_{\gamma}=\frac{2 p_{H} \cdot p_{\gamma}}{m_{H}^{2}} \xrightarrow{\vec{p}_{H}=0} x_{\gamma}=\frac{2 E_{\gamma}^{(0)}}{m_{H}} \quad 0 \leq x_{\gamma} \leq 1-\frac{m_{\ell}^{2}}{m_{H}^{2}}
$$

4d method cannot resolve the sum of the unwanted exponentials of the separate time orderings

3d method offers good control over the unwanted exponentials for a significantly cheaper computational cost

3pt function with e.m. current at origin

$$
C_{3, \mu \nu}^{\mathrm{EM}}\left(t_{W}, t_{H}\right)=e^{E_{H} t_{W}} \int d^{3} x \int d^{3} y e^{i\left(\vec{p}_{\gamma}-\vec{p}_{H}\right) \cdot \vec{x}} e^{i \vec{p}_{H} \cdot \vec{y}}\left\langle J_{\mu}^{\mathrm{em}}(0) J_{\nu}^{\mathrm{weak}}\left(t_{W}, \vec{x}\right) \phi_{H}^{\dagger}\left(t_{H}, \vec{y}\right)\right\rangle
$$

The spectral decomposition of the $t_{W}>0$ time ordering of $I_{\mu \nu}^{\mathrm{EM}}$ and the $t_{e m}<0$ time ordering of $I_{\mu \nu}$ are equal up to excited state effects

Improved form factors estimators

$$
C_{i}\left(\vec{p}_{\gamma}, t\right)=\frac{C_{p}\left(\vec{p}_{\gamma}, t\right)}{C_{p}\left(\vec{p}_{\gamma}=\vec{p}_{\gamma}^{\star}, t\right)} C_{z}\left(\vec{p}_{\gamma}=\vec{p}_{\gamma}^{\star}, t\right)
$$

Improved form factors estimators [2]

$$
C_{3, \mu \nu}\left(t_{e m}, t_{H}\right)=\int d^{3} x \int d^{3} y e^{-i \overrightarrow{\mathbf{p}}_{\gamma} \cdot \vec{x}^{i \overrightarrow{\mathbf{p}}_{H} \cdot \overrightarrow{\mathbf{y}}}\left\langle J_{\mu}^{\mathrm{em}}\left(t_{e m}, \overrightarrow{\mathbf{x}}\right) J_{\nu}^{\text {weak }}(0) \phi_{H}^{\dagger}\left(t_{H}, \overrightarrow{\mathbf{y}}\right)\right\rangle, ~ . ~}
$$

$\pm \vec{p}_{\gamma}$ average

NP subtraction of IR-divergent discretization effects

Blue data: improved subtraction of pt-like contribution

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$: weak and em datasets

$D_{s} \rightarrow \ell \nu_{\ell} \gamma:$ preliminary results

$$
D_{s}^{+} \rightarrow e^{+} \nu \gamma: \mathcal{B}\left(E_{\gamma}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}
$$

$$
\mathrm{SM}: \mathcal{O}\left(10^{-4}\right)
$$

$D_{s} \rightarrow \ell \nu_{\ell} \gamma:$ preliminary results

Similar cancellations observed in $D_{s} D_{s}^{*} \gamma$ couplings, corresponding to pole residues in $D_{s} \rightarrow \ell \nu_{\ell} \gamma$ form factors G. C. Donald et al., 2014 \& B. Pullin and R. Zwicky, 2021

$D_{s} \rightarrow \ell \nu_{\ell} \gamma$: comparison

sign: different FFs
parameterization

$D_{s} \rightarrow \ell \nu_{t} \gamma$: comparison

Conclusions and future perspectives

-The form factors for real emissions are accessible from Euclidean correlators

We compared analysis methods using 3d and 4d data. 3d method results in smallest statistical uncertainties and allows to tame S / N problems at large photon energies. Those findings have been illustrated in a method paper we published this year
-With moderate statistics we are able to provide rather precise, first-principles results for the form factors in the full kinematical (photon-energy) range

- Lattice calculations of radiative leptonic heavy-meson decays at high photon energy could provide useful information to better understand the internal structure of hadrons

OStatistical improvement for all ensembles used is in progress thanks to dedicated ACCESS computing resources. A new paper with continuum-limit results will appear soon. To extend the study to B -meson decays we will take advantage of new RBC/UKQCD ensembles at $a^{-1} \approx(3.5,4.5) \mathrm{GeV}$ a/ACCESS

Supplementary
 slides

Electromagnetic and isospin-breaking effects

Given the present exper. and theor. (LQCD) accuracy, an important source of uncertainty are long distance electromagnetic and $\mathrm{SU}(2)$-breaking corrections,
$\left.\frac{\Gamma\left(K^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}{\Gamma\left(\pi^{+} \rightarrow \ell^{+} v_{\ell}(\gamma)\right)}=\left(\frac{\left|V_{u s}\right|}{\left|V_{u d}\right|} \frac{f_{K}}{f_{\pi}}\right)^{2} \frac{M_{K^{+}}\left(1-m_{\ell}^{2} / M_{K^{+}}^{2}\right)^{2}}{M_{\pi^{+}}\left(1-m_{\ell}^{2} / M_{\pi^{+}}^{2}\right)^{2}}\left(1+\delta_{E M}+\delta_{S U(2)}\right)\right) \mathrm{K} / \pi$

For $\Gamma_{\mathrm{K} 12} / \Gamma_{\mathrm{\pi l2}}$
At leading order in ChPT both δ_{EM} and $\delta_{\mathrm{SU}(2)}$ can be expressed in terms of physical quantities (e.m. pion mass splitting, $f_{K} / f_{\Pi}, \ldots$)

- $\delta_{E M}=-0.0069(17) 25 \%$ of error due to higher orders $\Rightarrow 0.2 \%$ on $\Gamma_{\mathrm{K} 12} / \Gamma_{\pi \mid 2}$ M.Knecht et al., 2000; V.Cirigliano and H.Neufeld, 201 I
- $\delta_{S U(2)}=\left(\frac{f_{K^{+}} / f_{\pi^{+}}}{f_{K} / f_{\pi}}\right)^{2}-1=-0.0044(12)$
25% of error due to higher orders
$\Rightarrow 0.1 \%$ on $\Gamma_{\mathrm{Kl} 1} / \Gamma_{\mathrm{Tl} 12}$
J.Gasser and H.Leutwyler, I985; V.Cirigliano and H.Neufeld, 201 I

ChPT is not applicable to D and B decays

Real photon emission amplitude

By setting $p_{\gamma}^{2}=0$, at fixed meson mass, the form factors depend on $p_{H} \cdot p_{\gamma}$ only. Moreover, by choosing a physical basis for the polarization vectors, i.e. $\epsilon_{r}\left(\mathbf{p}_{\gamma}\right) \cdot p_{\gamma}=0$, one has

$$
\left.\epsilon_{\mu}^{r}\left(\mathbf{p}_{\gamma}\right) T^{\mu \nu}\left(p_{\gamma}, p_{H}\right)=\epsilon_{\mu}^{r}\left(\mathbf{p}_{\gamma}\right)\left\{\varepsilon^{\mu \nu \tau \rho}\left(p_{\gamma}\right)_{\tau}\right)_{F_{V}}+i\left[-g^{\mu \nu}\left(p_{\gamma} \cdot v\right)+v^{\mu} p_{\gamma}^{\nu}\right] F_{A}-i \frac{v^{\mu} v^{\nu}}{p_{\gamma} \cdot v} m_{H} f_{H}\right\}
$$

In the case of off-shell photons $\left(p_{\gamma}^{2} \neq 0\right) \longrightarrow \Gamma\left[H \rightarrow \ell \nu_{\ell} \ell^{+} \ell^{-}\right]$expressed in terms of 4 form factors

For large photon energies and in the B-meson rest frame the form factors can be written as

$$
\begin{aligned}
& F_{V}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\sqrt{ }\left(\lambda_{B}(\mu)\right.} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)+\Delta \xi\left(E_{\gamma}\right)} \\
& F_{A}\left(E_{\gamma}\right)=\frac{e_{u} M_{B} f_{B}}{2 E_{\sqrt{ }\left(\lambda_{B}(\mu)\right.} R\left(E_{\gamma}, \mu\right)+\xi\left(E_{\gamma}\right)-\Delta \xi\left(E_{\gamma}\right)}
\end{aligned}
$$

M. Beneke and J. Rohrwild, 2011

Structure dependent contributions to decays of D and B mesons

- For the studies of D and B mesons decays we cannot apply ChPT
- For B mesons in particular we have another small scale, $m_{B^{*}}-m_{B} \simeq 45 \mathrm{MeV}$ \square the radiation of a soft photon may still induce sizeable SD effects
- A phenomenological analysis based on a simple pole model for F_{V} and F_{A} confirms this picture D. Becirevic et al., PLB 681 (2009) 257

$F_{V} \simeq \frac{\tilde{C}_{V}}{1-\left(p_{B}-k\right)^{2} / m^{2}} \quad$ Under this assumption the SD contributions to $B \rightarrow e V(\gamma)$ for $\mathrm{E}_{\gamma} \simeq 20 \mathrm{MeV}$ can be very large, but are small for
$F_{A} \simeq \frac{\tilde{C}_{A}}{1-\left(p_{B}-k\right)^{2} / m_{B_{1}}^{2}}$ $B \rightarrow \mu \nu(\gamma)$ and $B \rightarrow \tau v(\gamma)$
A lattice calculation of F_{V} and F_{A} would be very useful

$$
R_{1}^{A}(\Delta E)=\frac{\Gamma_{1}^{\mathrm{A}}(\Delta E)}{\Gamma_{0}^{\alpha, \mathrm{pt}}+\Gamma_{1}^{p \mathrm{t}}(\Delta E)}, \quad \mathrm{A}=\{\mathrm{SD}, \mathrm{INT}\}
$$

SD = structure dependent INT = interference

R

- Interference contributions are negligible in all the decays
- Structure-dependent contributions can be sizable for $K \rightarrow e v(\gamma)$ but they are negligible for $\Delta E<20 \mathrm{MeV}$ (which is experimentally accessible)

$$
\begin{aligned}
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{SD}}}{d x_{\gamma}}=\frac{m_{P}^{2}}{6 f_{P}^{2} r_{\ell}^{2}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right)^{2}+F_{A}\left(x_{\gamma}\right)^{2}\right] f^{\mathrm{SD}}\left(x_{\gamma}\right) \\
& \frac{4 \pi}{\alpha \Gamma_{0}^{\text {tree }}} \frac{d \Gamma_{1}^{\mathrm{INT}}}{d x_{\gamma}}=-\frac{2 m_{P}}{f_{P}\left(1-r_{\ell}^{2}\right)^{2}}\left[F_{V}\left(x_{\gamma}\right) f_{V}^{\mathrm{INT}}\left(x_{\gamma}\right)+F_{A}\left(x_{\gamma}\right) f_{A}^{\mathrm{INT}}\left(x_{\gamma}\right)\right]
\end{aligned}
$$

$\mathrm{dR}_{1}^{\mathrm{SD}}\left(\pi \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} \mathrm{x}_{\gamma}$

$\mathrm{dR}_{1}^{\mathrm{SD}}\left(\mathrm{K} \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} \mathrm{x}_{\gamma}$

$$
\text { - ChPT O }\left(e^{2} p^{4}\right) \text { - lattice }
$$

$$
\mathrm{dR}_{1}^{\mathrm{NT}}\left(\pi \rightarrow \mu v_{\mu} \gamma\right) / \mathrm{dx} x_{\gamma}
$$

Analytic continuation from Minkowski to Euclidean spacetime [2]

Time ordering: $t_{e m}<0$

$$
\begin{aligned}
T_{\mu \nu}^{<}= & -\sum_{n} \frac{\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\vec{p}_{H}-\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{H}-\vec{p}_{\gamma}\right)\right| J_{\mu}^{\mathrm{em}}(0)\left|H\left(\vec{p}_{H}\right)\right\rangle}{2 E_{n, \vec{p}_{H}-\vec{p}_{\gamma}}\left(E_{\gamma}+E_{n, \vec{p}_{H}-\vec{p}_{\gamma}}-E_{H, \vec{p}_{H}}\right)} \\
I_{\mu \nu}^{<}\left(t_{H}, T\right)= & \int_{-T}^{0} d t_{\mathrm{em}} e^{E_{\gamma} t_{\mathrm{em}}} C_{3, \mu \nu}\left(t_{\mathrm{em}}, t_{H}\right) \\
= & \sum_{l, n} \frac{\langle 0| J_{\nu}^{\text {weak }}(0)\left|n\left(\vec{p}_{H}-\vec{p}_{\gamma}\right)\right\rangle\left\langle n\left(\vec{p}_{H}-\vec{p}_{\gamma}\right)\right| J_{\mu}^{\mathrm{em}}(0)\left|l\left(\vec{p}_{H}\right)\right\rangle\left\langle l\left(\vec{p}_{H}\right)\right| \phi_{H}^{\dagger}(0)|0\rangle}{2 E_{n, \vec{p}_{H}-\vec{p}_{\gamma}} 2 E_{l, \vec{p}_{H}}\left(E_{\gamma}+E_{n, \vec{p}_{H}-\vec{p}_{\gamma}}-E_{\left.l, \vec{p}_{H}\right)}\right)} \\
& \times e^{E_{l, \vec{p}_{H} H} t_{H}}\left[1-e^{\left.-\left(E_{\gamma}-E_{l, \vec{r}_{H}}+E_{\left.n, \vec{p}_{H}-\vec{\gamma}_{\gamma}\right) T}\right)\right]}\right.
\end{aligned}
$$

Since the electromagnetic current operator cannot change the flavor quantum numbers of a state, the lowest-energy state appearing in the sum over n is the meson H. The unwanted exponential vanishes if $\left|\vec{p}_{\gamma}\right|+\sqrt{m_{H}^{2}+\left(\vec{p}_{H}-\vec{p}_{\gamma}\right)^{2}}>\sqrt{m_{H}^{2}+\vec{p}_{H}^{2}}$, which is always true for $\left|\vec{p}_{\gamma}\right|>0$

Infinite-volume approximation

We assume there exist $c, d, \Lambda, \Lambda^{\prime} \in \mathbb{R}^{+}$and $L_{0} \in \mathbb{N}$ for which

$$
\tilde{C}^{L}(q) \equiv \sum_{x=-L / 2}^{L / 2-1} C^{L}(x) e^{i q x}
$$

for all x with $-L / 2 \leq x \leq L / 2$ and $L \geq L_{0}$ and

$$
\left|C^{\infty}(x)\right| \leq d e^{-\Lambda^{\prime}|x|}
$$

for all x with $|x|>L / 2$. We now define

$$
\left|C^{\infty}(x)-C^{L}(x)\right| \leq c e^{-\Lambda L} \quad \text { and } \quad \tilde{C}^{\infty}(q) \equiv \sum_{x=-\infty}^{\infty} C^{\infty}(x) e^{i q x}
$$

Under the above assumptions, it then follows that there is a $\tilde{c} \in \mathbb{R}^{+}$for which

$$
\left|\tilde{C}^{\infty}(q)-\tilde{C}^{L}(q)\right| \leq \tilde{c} e^{-\Lambda_{0} L}
$$

for all $q \in[-\pi, \pi]$ and all $L \geq L_{0}$, with $\Lambda_{0} \equiv \min \left(\Lambda, \Lambda^{\prime} / 2\right)$.

Cross-checks

Recall

$$
\begin{aligned}
T_{\mu \nu}= & \epsilon_{\mu \nu \tau \rho} p_{\gamma}^{\tau} v^{\rho} F_{V}+i\left[-g_{\mu \nu}\left(p_{\gamma} \cdot v\right)+v_{\mu}\left(p_{\gamma}\right)_{\nu}\right] F_{A}-i \frac{v_{\mu} v_{\nu}}{p_{\gamma} \cdot v} m_{D_{s}} f_{D_{s}} \\
& +\left(p_{\gamma}\right)_{\mu} \text {-terms }
\end{aligned}
$$

\longrightarrow also extract $f_{D_{s}}$ as a cross-check

Yellow line $=$ FLAG 2021 average

Cancellation between quark components

Fit form: 3d method

Include terms to fit
(1) unwanted exponential from first intermediate state
(2) first excited state

Fit form factors F_{V} and $F_{A, S D}$ directly instead of $I_{\mu \nu}$

$$
\begin{aligned}
& \underbrace{F_{<}^{\text {weak }}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}\left(1+B_{F, \text { exc }}^{<} e^{\Delta E\left(T+t_{H}\right)}\right)}_{t_{H}<t_{e m}<0 \quad t_{H}<0<t_{W}} \overbrace{e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}+C_{F}^{<} e^{\Delta E t_{H}}} \\
& F_{>}^{e m}\left(t_{H}, T\right)=F^{<}+B_{F}^{<}\left[1+B_{F, \text { exc }}^{<} \frac{E_{\gamma}+E^{<}-\left(\Delta E+E_{H}\right)}{E_{\gamma}+E^{<}-E_{H}} e^{\Delta E t_{H}}\right] e^{-\left(E_{\gamma}-E_{H}+E^{<}\right) T}+\tilde{C}_{F}^{<} e^{\Delta E t_{H}}
\end{aligned}
$$

$$
t_{H}<0<t_{e m} \quad t_{H}<t_{W}<0
$$

$$
F_{>}^{\text {weak }}\left(t_{H}, T\right)=F^{>}+B_{F}^{>}\left(1+B_{F, e x c}^{>} e^{\Delta E t_{H}}\right) e^{\left(E_{\gamma}-E^{>}\right) T}+C_{F}^{>} e^{\Delta E t_{H}}
$$

$$
F_{<}^{e m}\left(t_{H}, T\right)=F^{>}+B_{F}^{>}\left[1+B_{F, \text { exc }}^{>} \frac{E_{\gamma}-E^{>}}{E_{\gamma}-E^{>}+\Delta E} e^{\Delta E\left(T+t_{H}\right)}\right] e^{\left(E_{\gamma}-E^{>}\right) T}+\tilde{C}_{F}^{>} e^{\Delta E t_{H}}
$$

Only have two values of t_{H}, fitting multiple exponentials not possible \rightarrow Determine ΔE from the pseudoscalar two-point correlation function
\rightarrow use result as Gaussian prior in form factor fits

$D_{s} \rightarrow \ell \nu_{\ell} \gamma: 3 \mathrm{~d}$ method

