A new approach for computing GPDs
 from asymmetric frames

40th International Symposium on Lattice Field Theory

Shohini Bhattacharya

RIKEN BNL

3 August 2023
In Collaboration with:
Krzysztof Cichy (Adam Mickiewicz U.) Martha Constantinou (Temple U.) Jack Dodson (Temple U.)
Xiang Gao (ANL)
Andreas Metz (Temple U.)
Joshua Miller (Temple U.)
Swagato Mukherjee (BNL)
Peter Petreczky (BNL)
Aurora Scapellato (Temple U.)
Fernanda Steffens (Bonn U.)
Yong Zhao (ANL)

Fermilab

Based on: PhysRevD. 106.114512 \& In Preparation

Generalized Parton Distributions (GPDs)

GPD correlator: Graphical representation

Definition: (See for example Diehl, hep-ph/0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Motivation for GPD studies

Motivation for GPD studies

Spin sum rule \& orbital angular momentum (Ji, 9603249):

Eta-meson mass
generation

Glueball mass generation

First Lattice QCD results of the x-dependent GPDs

Example:

Excellent progress!!!

First Lattice QCD results of the x-dependent GPDs

Example:

Excellent progress!!!

But little hiccup
Traditionally, GPDs have been calculated from "symmetric frames"

Practical drawback

[^0]
Lattice QCD calculations of GPDs in asymmetric frames

Resolution:

- Perform Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Our contribution in a nutshell:

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks

;ource

Shohini Bhattacharya, , ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3,}{ }^{\dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$
Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

$$
\begin{array}{ll}
\text { In Preparation } & \text { Generalized Parton Distributions from Lattice QCD } \\
& \text { with Asymmetric Momentum Transfer: Axial-vector case }
\end{array}
$$

$$
\text { Shohini Bhattacharya, }{ }^{1, *} \text { Krzysztof Cichy, }{ }^{2} \text { Martha Constantinou, }{ }^{3, \dagger} \text { Jack Dodson, }{ }^{3} \text { Xiang Gao, }{ }^{4} \text { Andreas Metz, }{ }^{3}
$$

$$
\text { Joshua Miller, }{ }^{3, \ddagger} \text { Swagato Mukherjee, }{ }^{5} \text { Peter Petreczky, }{ }^{5} \text { Aurora Scapellato, }{ }^{3} \text { Fernanda Steffens, }{ }^{6} \text { and Yong Zhao }{ }^{4}
$$

Key findings: e QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

This talk

- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Lattice QCD calculations of GPDs in asymmetric frames

Why is the question of frame-(in)dependence relevant?

Key points:
with Asyı
Shohini Bhattacharya Andreas Metz, ${ }^{3}$ Swa - Andre Mer

Example: Light-cone GPD H

$$
H(x, \xi, t) \rightarrow \int \frac{d z^{-}}{4 \pi} e^{i x P \cdot z}\left\langle p^{\prime}\right| \bar{q} \gamma^{+} q|p\rangle \quad z=\left(0, z^{-}, 0_{\perp}\right)
$$

$$
H(x, \xi, t) \rightarrow \int \frac{d(P \cdot z)}{4 \pi} e^{i x P \cdot z} \frac{1}{P \cdot z}\left\langle p^{\prime}\right| \bar{q} \not \not q q|p\rangle \quad \text { Arbitrary light-like } z
$$

GPDs on the light-cone are Lorentz-invariant

Key findings: e QCD calculations of GPDS in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Lattice QCD calculations of GPDs in asymmetric frames

Why is the question of frame-(in)dependence relevant?

Key poiı
Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks

Shohini Bhattacharya, , ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

GPDs on the light-cone are Lorentz-invariant

Key findings:

- Lorentz covariant form
- Elimination of power cc

Are quasi-GPDs Lorentz-invariant?

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Definitions of quasi-GPDs

Historic definitions of quasi-GPDs H \& E are not manisfestly Lorentz invariant

Lattice QCD calculations of GPDs in asymmetric frames

Definitions of quasi-GPDs

Historic definitions of quasi-GPDs H \& E are not manisfestly Lorentz invariant

Think about how γ^{0} transforms under Lorentz transformation

"Transverse" Lorentz
transformation

Can we come up with a manifestly Lorentz-invariant definition of quasi-GPDs for finite values of momentum?

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} \boldsymbol{A}_{1}+m z^{\mu} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{m} \boldsymbol{A}_{3}+i m \sigma^{\mu z} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{m} \boldsymbol{A}_{\mathbf{5}}+\frac{P^{\mu} i \sigma^{z \Delta}}{m} \boldsymbol{A}_{6}+m z^{\mu} i \sigma^{z \Delta} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} \boldsymbol{A}_{8}\right] u\left(p_{i}, \lambda\right)
$$

$$
\left.\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors) $A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} \boldsymbol{A}_{\mathbf{1}}+m z^{\mu} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{m} \boldsymbol{A}_{\mathbf{3}}+i m \sigma^{\mu z} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{m} \boldsymbol{A}_{\mathbf{5}}+\frac{P^{\mu} i \sigma^{z \Delta}}{m} \boldsymbol{A}_{\mathbf{6}}+m z^{\mu} i \sigma^{z \Delta} \boldsymbol{A}_{\mathbf{7}}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} \boldsymbol{A}_{\mathbf{8}}\right] u\left(p_{i}, \lambda\right)
$$

\checkmark Main point:
Calculate quasi-GPD in symmetric frame through matrix elements of asymmetric frame

$$
F^{s} \longleftrightarrow F^{a}
$$

Niilo's talk:
Unveil GPDs through the amplitude formalism in the pseudo-distribution approach

Lattice QCD calculations of GPDs in asymmetric frames

Re-exploring historical definitions of quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)

Lattice QCD calculations of GPDs in asymmetric frames

Re-exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Explicit non-invariance from kinematics factors

	Symmetric frame:
	$\begin{aligned} \left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right\|_{s} & =A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P_{s}^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\ & +\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{0} P_{s}^{3}}\right) A_{8} \end{aligned}$
	Asymmetric frame:

Lattice QCD calculations of GPDs in acummotrin framace Relation between light-cone GPD H \& amplitudes:

Re-exploring historical definitions	
Frame-dependent expressions: Explicit non-in	

Lattice QCD calculations of GPDs in aceummotrin framoc
Relation between light-cone GPD H \& amplitudes:

| Novel definition of quasi-GI | |
| ---: | :--- | :--- |
| | $H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg }, s / a} \cdot z} A_{3}$ |

Symmetric frame:

$$
\begin{gathered}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3}-\frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{3}^{3}}\right) A_{6} \\
+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P^{0} P^{3}}-\frac{\left(\Delta_{s}^{0} \Delta_{s}^{2} \Delta_{s}^{3}\right.}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{!}^{0} P^{3}}\right) A_{8}
\end{gathered}
$$

Contamination from additional amplitudes or power corrections

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

You can think of eliminating additional amplitudes by the addition of other operators:

In spirit of what's done for PDFs:

Asymmetric frame:

$$
\left(\gamma^{1}, \gamma^{2}\right)
$$

Lattice QCD calculations of GPDs in acummotrin framac

Relation between light-cone GPD H \& amplitudes:
Novel definition of quasi-Gl

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

Sketch of the essence of a q uasi-GPDs
Sketriant definition of quas

In spirit of what's done for PDFs:
You can think of eliminating additional amplitudes by the addition of other operators:

Asymmetric frame:

$$
\left(\gamma^{1}, \gamma^{2}\right)
$$

Lorentz-invariant definition of quasi-GPDs: Main finding:

$$
\text { Schematic structure: } \quad H_{\mathrm{Q}} \rightarrow c_{0}\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle+c_{1}\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle+c_{2}\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle
$$

Same functional forms QCD calculations of GPDs in asymmetric frames

Same functional forms QCD calculations of GPDs in asymmetric frames

Relation between light-cone GPD H \& amplitudes:

Same functional forms QCD calculations of GPDs in asymmetric frames

Relatoon between light-cone GPD H \& amplitudes:

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs
Definition: (Historic)

$$
\begin{aligned}
\widetilde{F}^{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{3} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
& =\bar{u}^{s / a}\left(p_{f}^{s / a}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathcal{H}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)+\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathcal{E}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)\right] u^{s / a}\left(p_{i}^{s / a}, \lambda\right)
\end{aligned}
$$

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

$$
\begin{aligned}
\widetilde{F}^{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{3} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
& =\bar{u}^{s / a}\left(p_{f}^{s / a}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathcal{H}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)-\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathcal{E}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right] u^{s / a}\left(p_{i}^{s / a}, \lambda\right)\right.
\end{aligned}
$$

GPD \widetilde{E} can not be accessed at zero skewness because it simply does not contribute to the matrix element at this point

See Martha's talk :

Glimpse into GPD \widetilde{E} through twist 3 at zero skewness

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element:

$$
\begin{aligned}
& \widetilde{F}^{\mu}=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{\boldsymbol{A}}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{\boldsymbol{A}}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{\boldsymbol{A}}_{3}+m z^{\mu} \widetilde{\boldsymbol{A}}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{\boldsymbol{A}}_{5}\right)+m \not \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{\boldsymbol{A}}_{6}+m z^{\mu} \widetilde{\boldsymbol{A}}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{\boldsymbol{A}}_{8}\right)\right] u\left(p_{i}, \lambda\right) \\
& \text { Axial-vector operator } \widetilde{F}_{\lambda, \lambda^{\prime}}^{\mu}=\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} \gamma_{5} q(z / 2)|p, \lambda\rangle \mid \\
& \left.\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
\end{aligned}
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures (similar to vector case)

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=\widetilde{\boldsymbol{A}}_{\mathbf{2}}-z^{3} P^{3, s / a} \widetilde{\boldsymbol{A}}_{\mathbf{6}}-m^{2}\left(z^{3}\right)^{2} \widetilde{\boldsymbol{A}}_{\boldsymbol{7}}-z^{3} \Delta^{3, s / a} \widetilde{\boldsymbol{A}}_{\mathbf{8}}$

Features:

- Same functional form in both symmetric $\&$ asymmetric frames

Frame-independence of $\gamma^{3} \gamma_{5}$ understood by considering
"transverse boosts" that preserve the 3-component

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\begin{aligned}
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\widetilde{A}_{\mathbf{2}}-z^{3} P^{3, s / a} \widetilde{A}_{\mathbf{6}}-m^{2}\left(z^{3}\right)^{2} \widetilde{A}_{7}-z^{3} \Delta^{3, s / a} \widetilde{\boldsymbol{A}}_{\mathbf{8}} \\
& =\widetilde{A}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{A}_{6}+m^{2} z^{2} \widetilde{A}_{7}+\left(\Delta^{s / a} \cdot z\right) \widetilde{A}_{8}
\end{aligned}
$$

Features:

- Same functional form in both symmetric \& asymmetric frames

- Kinematical prefactor of amplitudes can be uniquely promoted to a Lorentz-invariant status

The historic definition involving $\gamma^{3} \gamma_{5}$ is a
contender for a Lorentz invariant definition

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\begin{aligned}
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\tilde{A}_{2}-z^{3} P^{3, s / a} \tilde{A}_{6}-m^{2}\left(z^{3}\right)^{2} \tilde{A}_{7}-z^{3} \Delta^{3, s / a} \tilde{A}_{8} \\
& =\widetilde{\boldsymbol{A}}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{6}}+m^{2} z^{2} \widetilde{\boldsymbol{A}}_{\boldsymbol{7}}+\left(\Delta^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{8}}
\end{aligned}
$$

Features:

- Non-uniqueness of LI definitions for quasi-GPDs

Contender 2

Lorentz-invariant definition of LC definition to $z^{2} \neq 0$:
Formulation in terms of a new operator:

$$
\widetilde{\mathcal{H}}=\widetilde{A}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{A}_{6}+\left(\Delta^{s / a} \cdot z\right) \widetilde{A}_{8}
$$

$$
A_{i} \equiv A_{i}\left(z^{2} \neq 0\right)
$$

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$

Based on symmetry arguments we expect $\widetilde{A}_{3 / 4}$ to exhibit at least linear scaling with respect to ξ

Hence appearance of $1 / \xi$ in above expression is innocuous

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\widetilde{\mathcal{E}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=2 \frac{P^{3, s / a}}{\Delta^{3, s / a}} \widetilde{A}_{\mathbf{3}}+2 m^{2} \frac{z^{3}}{\Delta^{3, s / a}} \widetilde{\boldsymbol{A}}_{\mathbf{4}}+2 \widetilde{\boldsymbol{A}}_{\mathbf{5}}
$$

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$
- To calculate $\widetilde{\mathcal{E}}$ at $\xi=0$ using above expression, one needs to determine the zero-skewness limit of $\widetilde{A}_{3} / \xi, \widetilde{A}_{4} / \xi$ (well-defined limit)

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

See Joshua's talk:
Validation of formalism \& Lattice QCD results

- To calculate \mathcal{E} at $\xi=0$ using above expression, one needs to determine the zero-skewness limit of $\widetilde{A}_{3} / \xi, \widetilde{A}_{4} / \xi$ (well-defined limit)

Summary

Goal:
 Connecting dots: Ending with what I started with

Perform Lattice QCD calculations of GPDs in asymmetric frames

All

Summary

Summary

Why is the question of frame-(in)dependence relevant? ${ }^{\text {at } I \text { started with }}$

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

2) Novel parameterization of position-space matrix element: (Vector case)

$$
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} A_{1}+m z^{\mu} A_{2}+\frac{\Delta^{\mu}}{m} A_{3}+i m \sigma^{\mu z} A_{4}+\frac{i \sigma^{\mu \Delta}}{m} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{m} A_{6}+m z^{\mu} i \sigma^{z \Delta} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_{8}\right] u\left(p_{i}, \lambda\right)
$$

Key findings:

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Summary

Summary

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Summary

[^0]: Lattice QCD calculations of GPDs in symmetric frames are expensive

