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Generalized Parton Distributions (GPDs)

|—z/2| |z/2 |

GPD correlator: Graphical representation

Definition: (See for example Diehl, hep-ph/0307382)
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Motivation for GPD studies

Spin sum rule & orbital angular momentum (Ji, 9603249):

J9 = f_ll dx z(H? + E?)|i—g

3D imaging (Burkardt, 0005108 ...) h

Imprints of chiral/trace anomalies in GPDs (SB, Hatta, Vogelsang, 2305.09431): ]
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rofound physical implication of anomaly poles:
“o\le\ Touches questions on mass generations, Chiral symmetry breaking, ...




Motivation for GPD studies g

We need GPD measurements from Lattice QCD |




First Lattice QCD results of the x-dependent GPDs

Excellent progress!!!

Example:
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First Lattice QCD results of the x-dependent GPDs

Excellent progress!!! |

But little hiccup ..

IV Traditionally, GPDs have been calculated from “symmetric frames”

T } AT STREr ok ) o S B . == e T

Practical drawback

> A/ )

L Momentum transfer

symmetric between source & sink

Lattice QCD calculations of GPDs in symmetric frames are expensive




Lattice QCD calculations of GPDs in asymmetric frames

Resolution:

All
momentum transfer to source

—z/2 z/2

« Perform Lattice QCD calculations of GPDs in asymmetric frames  See Joshua’s talk




Lattice QCD calculations of GPDs in asymmetric frames

Our contribution in a nutshell:

All
neralized Parton Distributions from Latti D k
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with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya,!* Krzysztof Cichy,? Martha Constantinou,® T Jack Dodson,® Xiang Gao,*
Andreas Metz,® Swagato Mukherjee,! Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao*
A% A ¥
In Preparati"" Generalized Parton Distributions from Lattice QCD

with Asymmetric Momentum Transfer: Axial-vector case

4 oRle 9 ” ~ e 9 - = 2 4 < »n -~ ‘
Shohini Bhattacharya,'s* Krzysztof Cichy,? Martha Constantinou,® ' Jack Dodson,* Xiang Gao,* Andreas Metz,*
Joshua Miller,* ¥ Swagato Mukherjee,” Peter Petreczky,” Aurora Scapellato,” Fernanda Steffens,® and Yong Zhao*

Key findings: |

Lorentz covariant formalism for calculating quasi-GPDs in any frame  This talk

Elimination of power corrections potentially allowing faster convergence to light-cone GPDs




Lattice QCD calculations of GPDs in asymmetric frames k

Why is the question of frame-(in)dependence relevant? I

Key points: I Example: Light-cone GPD H
w1 Sy1 1
H(z,&,1) —>/ e (p'lgv* qlp) ' w02, 00)

d(P - ’ 1
H(z,€,t) — / %e””'zp—.z(plqu,qh)) ' b iy Tl o

GPDs on the light-cone are Lorentz-invariant I

Shohini Bhattacharya
Andreas Metz,> Swa

« Lorentz covariant formalism for calculating quasi-GPDs in any frame

« Elimination of power corrections potentially allowing faster convergence to light-cone GPDs




Lattice QCD calculations of GPDs in asymmetric frames

Why is the question of frame-(in)dependence relevant?

Generalized Parton Distributions from Lattice QCD

with Asymmetric Momentum Transfer: Unpolarized Quarks

Shohini Bhattacharya,!'* Krzysztof Cichy,? Martha Constantinou,? T Jack Dodson,® Xiang Gao,*
Andreas Metz,® Swagato Mukherjee,! Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao*
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Are quasi-GPDs Lorentz-invariant? 1
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Lattice QCD calculations of GPDs in asymmetric frames

Definitions of quasi-GPDs

©

—z/2

2/2

Definition of quasi-GPDs in symmetric frames: (Historical)
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Lattice QCD calculations of GPDs in asymmetric frames

Definitions of quasi-GPDs

Historic definitions of quasi-GPDs H & E are not manisfestly Lorentz invariant

b 4 4 = | ,
Think about how 7 transforms under Lorentz transformation
— | I —
2| [22] | [er2|  [22] D)
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| < B

transformation Fo =
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Lattice QCD calculations of GPDs in asymmetric frames

Definitions of quasi-GPDs

Historic definitions of quasi-GPDs H & E are not manisfestly Lorentz invariant |

¢ |

Can we come up with a
manifestly Lorentz-invariant definition of quasi-GPDs for finite values of momentum?

_—
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Lattice QCD calculations of GPDs in asymmetric frames kf

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

ioh Prig*® Atig=D

As + Ag +mztic*® Ay +
m

P AH
F'(z, P,A) = u(py, \') — AL+ mzH Ay + — Ay im0t Ag + Asg |u(pi, A)

1
|

Vector operator F{',, = (', N|g(—z/2)y"q(2/2)|p, \)

Z:O,EJ_ :OJ_

Features:

« General structure of matrix element based on constraints from Parity
« 8 linearly-independent Dirac structures

+ 8 Lorentz-invariant amplitudes (or Form Factors) A; = A;(z- P,z - A,t = A2, 2?)
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Lattice QCD calculations of GPDs in asymmetric frames g

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

ighA PHig=A AHigD

Ag + Ag +mztic*® Ay +
m

pr AH
FH(z,P,A) = ﬂ(pf, )\’) — A1 +m2t Ay + — Az +imot Ay + Ag |u(pi, M)
m m

I

Main point:

Calculate quasi-GPD in symmetric frame through matrix elements of asymmetric frame|

FS «— F@

it

Niilo’s talk:

Unveil GPDs through the amplitude formalism in the pseudo-distribution approach




N
Lattice QCD calculations of GPDs in asymmetric frames kf

Re-exploring historical definitions of quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)

16




N
Lattice QCD calculations of GPDs in asymmetric frames kf

Re-exploring historical definitions of quasi-GPDs |

Frame-dependent expressions: Explicit non-invariance from kinematics factors

Symmetric frame:

2M2P3  2M2(P3)2  2M?2P3

LA A3 (A%2:3  ADA3PY  A3A%
+ 5o A Ag
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Asymmetric frame:
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Lattice QCD calculations of GPDs ir 2acvmmatrir framae ' "

Relation between light-cone GPD H & amplitudes: |

Re-exploring historical definitions

s/a’ Z

H(z-Pz-A,t=A02%2%) = A, + Ag

o e o ° P(nv. s/a '
Frame-dependent expressions: Explicit non-in o '

Lorentz-invariant expression |




Lattice QCD calculations of GPDs ir 2acvmmatrir framae

Novel definition of quasi-Gl

Mapping amplitudes to the historical definitions of quasi-GP

Symmetric frame:

e

Relation between light-cone GPD H & amplitudes: |
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AOA3 23 PO
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Contamination from additional amplitudes or power corrections |
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CD calculations of GPDs ir aevmmatrir framae

s = " = /
arXiv: 1705.01488 stributions a4 peendo PO Relation between light-cone GPD H & amplitudes: |
qQu
PDFEs, momu\tu“" adyush¥in o s and g = _mgm -
Q“‘“ oy ol VA 2 VA B T Novel definition of quasi-Gl | ~
d Do ; Accele ratoT Rncsies R — g £ S ] A
Thomas ""I(::':““ N““U”ul = f H(Z . Pq VA Aq tr E— AZ, Zz) = Al + S/“ A3

P(z‘vg.s/a "2

“‘t&?trary to quasi-PDFs, ~Y operator for quasi-GPDs is
contaminated with additional amplitudes or power corrections FF ‘

—_—

You can think of eliminating additional amplitudes by the
addition of other operators:

(7', %)

——— ——

In spirit of what’s done for PDFs:




()
Lattice QCD calculations of GPDs ir acvmmatrir framac "

Relation between light-cone GPD H & amplitudes: |
Novel definition of quasi-Gl |
H(z

‘ As' a'?
Pzt =»022%) = Ay +—212 " Aq
P(z‘vg.s/a. "2

Contrary to quasi-PDFs, ~Y operator for quasi-GPDs is
contaminated with additional amplitudes or power corrections r ‘

—_—

pvaria® You can think of eliminating additional amplitudes by the
addition of other operators:

(v*, %)

Lorentz-invariant definition of quasi-GPDs: Main finding:

Schematic structure:  Hq — co (%) + c1 (¥y ) + o (%))

Note: Here ¢’s are frame-dependent kinematic factors that cancel additional amplitudes 3




Relation between light-cone GPD H & amplitudes: @

‘ Asu'z
H(z Pz At = A2, 22) = A1+/—A3

(11 g.s/a’

/ ' Lorentz-invariant generalization of LC d

Ho(z-Pz-At=A%2%) = A1 + —22 " Aq
R‘L'U(},S/U "2

th

| : :
Lorentz-invariant definition of quasi-GPDs: | Main finding:

Schematic structure:  Hq — co (%) + c1 (¥y ) + o (%))

Note: Here ¢’s are frame-dependent kinematic factors that cancel additional amplitudes to
project quasi-GPD potentially faster (vs historic def.) onto light-cone GPD




Same functional forms ECD calculations of GPDs in asymmetric frames

Relation between light-cone GPD H & amplitudes:

(/)]

As/a 8k

| Hiz PN A2 -2)
Con| ni pz-at=0%=4;+ Ay asi-GPDs is

Pavg,sy =

contam /

—# Lorentz-invariant generalization of LC definition to 27 # 0:
=35 ey

— A2 _
i = A 2 P A, = As + Hq(z-Pyz- At =A% 2%) = Ay +

P-E-J P(wg,e/a <
AL 7
L8 T ——
Key DOilltS: I I — £or | aadition o1 otner operx ators:
)

P9 WA

1) Lorentz-invariant generalization of LC definition to z> # (0 might converge faster

= A\
'2) Lorentz-invariant definition —» _differences suppressed by frame-independent power corrections

Schematic structure: Hqg — Co(0Y ) + CL{0Y Q) + Co (YD)

- = : g, - : 3.3 3A2 AD
Note: Here ¢’s are frame-dependent kinematic factors that cancel additional amplitudes to Naz” CATA,

\2 Qiﬂ”rzl)n ]):’,

project quasi-GPD potentially faster (vs historic def.) onto light-cone GPD vg.a) avg,al duge
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Relation between light-cone GPD H & amplitudes:

As/a 8k

| H(z - P.z~I0d A“. z-

Con| ai-Pz-At=0222)= A + As jasi-GPDs is
Pavg,s% ie
contam /

'—+ll Lorentz-invariant generalization of LC definition to 27 # 0:
— T —h AN
(—Az(~ 1\925-_./1.;\)'& L2 Ho(z Pz At =A%2%) = Ay + —1% " A4

Key points: I |

CSrhaoamafic cfrrgofuivras { — o ey s /‘,Tmn..'\\ == = /z’_m1 S N ey /JTV/\‘Q_I“\\ - — = A .
A However, it is essential to acknowledge that the
Caveat: : N ; —y \
_P amplitudes themselves also contain implicit power corrections. Moreover, it is worth noting that the presence of
Note e cs additional amplitudes in the first place could potentially serve to mitigate the implicit power corrections inherent in
) i ~ the amplitudes Ultimately, the actual convergence of the different quasi-GPD definitions is

project q' determined by the underlying non-perturbative dynamics. Therefore, it is important to perform numerical comparisons

L4




Lattice QCD calculations of GPDs in asymmetric frames

Why is the question of frame-(in)dependence relevant? |

-

In P,,epara"" Generalized Parton Distributions from Lattice QCD

with Asymmetric Momentum Transfer: Axial-vector case

Shohini Bhattacharya,'' * Krzysztof Cichy,? Martha Constantinou,® ' Jack Dodson,? Xiang Gao,* Andreas Metz,?
o ? - - ’ o
Joshua Miller,* # Swagato Mukherjee,” Peter Petreczky,” Aurora Scapellato,? Fernanda Steffens,® and Yong Zhao?
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Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

— ﬁS/CL

(

s/a

pf:

F3(z, P/ A1) = (pps N[ (=5) 7* 9 W(=3, 5)0(5)Ipis A)

/\I) 73,75 ﬁ;/a(szs/a’As/G) +

AB”)’s
2m

E3/ (2, P/ AT w3 N)
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Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

F3(z, PP A% = (pp; N (—2) 739 W(=2, 2)0(2) |pis A)

AB”YE)
2m

= ﬁs/a(P;/aa M) 1795 ﬁ?/“(z, psle AS/G’) gg/a(z, psla As/e us/“(pf/a, A)

GPD E can not be accessed at zero skewness because it simply
does not contribute to the matrix element at this point

See Martha’s talk:

Glimpse into GPD E through twist 3 at zero skewness

27




~N
Lattice QCD calculations of GPDs in asymmetric frames kf

Lorentz covariant formalism

Novel parameterization of position-space matrix element:

jerPzA ~ Pr -~ AHF Pr ~ AH ~
Al + 7“’}/5442 + Y5 (EAS + mz”A4 + WAE)) + m7é’y5 (EAG + mz“A7 + EA8>1| u(p%-? )\)

o~

F* =a(ps, N)

A

Axial-vector operator F/',, = (o', N'|d(—z/2)7"vs4(2/2)|p, \)

Features:

« General structure of matrix element based on constraints from Parity

- 8 linearly-independent Dirac structures (similar to vector case)




Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

ﬁg(Z,PS/a, As/a) _ sz o Z3P3,S/aﬁ6 o m2(23)2ﬁ7 o Z3A3,s/a£8

Features:

« Same functional form in both symmetric & asymmetric frames

Frame-independence of 7375 understood by considering

“transverse boosts” that preserve the 3-component

29




Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

ﬁg(Z,PS/a, As/a) _ sz o Z3P3,S/CLAV6 o m2(23)2ﬁ7 o Z3A3,s/a£8

= Avg + (PS/a : Z)Avﬁ + m2z2£7 + (As/a : 2)12(8

Features:
« Same functional form in both symmetric & asymmetric frames

« Kinematical prefactor of amplitudes can be uniquely promoted
to a Lorentz-invariant status

The historic definition involving 7>7s is a

contender for a Lorentz invariant definition

20




Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Contender 1 ]
,,, . Hg(zaps/a’As/a)
= Ay + (P¥% . 2)Ag + m222 Ay + (A% . 2) Ag
Features:
* Non-uniqueness of LI definitions for quasi-GPDs
Contender 2 Lorentz-invariant definition of LC definition to 22 £ 0:

] E

Formulation in terms of a new operator:

H= Ay + (P 2)Ag + (A% 2) Ag

Same functional form as LC GPD

A; = Ai(22 #£0)

21




Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

L, L\
. PS,S/a 3 - -
53(2, Ps/a, AS/G) — 9 AB.s/ Az + 2m 5.5/a 4+ 2A5
g —

Features:

. £ expression for £ £ 0

Based on symmetry arguments we expect 153 /4 to exhibit

at least linear scaling with respect to £

Hence appearance of 1/¢ in above expression is innocuous
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Lattice QCD calculations of GPDs in asymmetric frames k

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

PS,S/GL 3

A3:s/a As +2m A3:s/a

gg(szs/a,As/G) =2 Av4—|—212i5

Features:

. £ expression for £ £ 0

- To calculate £ at £ = 0 using above expression, one needs to

determine the zero-skewness limit of A, /€, Ay /€ (well-defined limit)




Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

See Joshua’s talk:

Validation of formalism & Lattice QCD results

~




Summary

Goal: Connecting dots: Ending with what | started with

Perform Lattice QCD calculations of GPDs in asymmetric frames|

All
momentum transfer to source

—z/2 z/2
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Why is the question of frame- (m)dependence relevant at started wit

Generalized Parton Distributions from Lattice QCD A"
with Asymmetric Momentum Transfer: Unpolarized Quarks t.l

m transfer to source
Shohini Bhattacharya,!s * Krzysztof Cichy,? Martha Constantinou,® T Jack Dodson,? Xiang Gao,*
Andreas Metz,® Swagato Mukherjee,! Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao*

T

1 )} Historic definitions of quasi-GPDs H & E are not manisfestly Lorentz invariant |
"’v\ r

Symmetric frame:

HQ — 6@3702;))

0

((A?)‘Z:I; AOAI%,,SP() .,JZA‘Z :

A OAZSPO  23A2
Ha) (2 Por Bs)|, = A + s MZP3 T 2ME(PP)? | 2PP3 )l
.

AQ .SZJ A“ 2A2§::5 AQZSA'Z
( ‘3) : _( h? '- s .'s. _L. A8
2MZPOPS.  2MA:(PE)2  2MAPYP3

Contamination from additional amplitudes or power corrections

Key findings: e

=5




Summary g

. ~ o -
Why is the question of frame-(in)dependence relevant? Lat started wit

Generalized Parton Distributions from Lattice QCD A"

with Asymmetric Momentum Transfer: Unpolarized Quarks

Shohini Bhattacharya,!s * Krzysztof Cichy,? Martha Constantinou,® T Jack Dodson,? Xiang Gao,*
Andreas Metz,® Swagato Mukherjee,! Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao*

S A

2) Novel parameterization of position-space matrix element: (Vector case)

’um transfer to source

PH AH . i io.;lA P‘l‘iO':A o A’liO:A
Ay +mz2lt Ay + — Az +imoH* Ay + As + Ag + mz*ioc*® Ay +
m m m m m

FB(z B.N)= 'ii(g)f./\')[ Aglu(p;, A)

Key findings: j

« Lorentz covariant formalism for calculating quasi-GPDs in any frame

7




Summary

Why is the question of frame-(in)dependence relevant? r

_at | started with

Shohini Bhattacharya,!s * Krzysztof Cichy,? Martha Constantinou,® T Jack Dodson,? Xiang Gao,*

Generalized Parton Distributions from Lattice QCD A"

with Asymmetric Momentum Transfer: Unpolarized Quarks

’um transfer to source

Andreas Metz,® Swagato Mukherjee,! Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao*

=272 z/2

.

3) Lorentz-invariant definition of quasi-GPDs: | »

. X a2
HQ(ZP,ZAf=A2,22)2A1+#A1 - , o
avg,s/a % Hqg — ¢ (Yy w) c1{yy "C.'i’>

62@72"@??)

Same functional form as LC GPD |

Key findings: j

THTASTIVITY T VAT 9 ITT A9 yrIrTEn n(

Lorentz covariant formalism for calculating quasi-GPDs in any frame

— S sy

Elimination of power corrections potentially allowing faster convergence to light-cone GPDs
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Summary

Why is the question of frame-(in)dependence relevant?

,', at | started with

In pr eparation Generalized Parton Distributions from Lattice QCD

with Asymmetric Momentum Transfer: Axial-vector case

Joshua Miller,* ¥ Swagato Mukherjee,” Peter Petreczky,” Aurora Scapellato,® Fernanda Steffens,

Shohini Bhattacharya,' * Krazysztof Cichy,?> Martha Constantinou,®  Jack Dodson,* Xiang Gao,* Andreas Metz,
6

Al
nsfer to source

and Yong Zhao* |

\. T T |

1) Novel parameterization of position-space matrix element: (Axial-vector case)

. » PO,
’IG”I zA

m m m m

F# = u(pr,\') [

¢ - PH 2 AF PH : A
Aq +Hy5 A + ’)—,( Az +mztA, + A5> + 171#75( Ag +mztAqr +

2

m

fis)] u(pi, A)

Axial-vector operator F}',, = (', N|q(—z/2)v"v5q(2/2)|p, /\)‘

Key findings: j

2’:0.51 :6;

« Lorentz covariant formalism for calculating quasi-GPDs in any frame

29




Summary

_at | started with

Why is the question of frame-(in)dependence relevant?

ation Generalized Parton Distributions from Lattice QCD \"
 prep®”

with Asymmetric Momentum Transfer: Axial-vector case lnSfer to source

Shohini Bhattacharya,' * Krazysztof Cichy,?> Martha Constantinou,®  Jack Dodson,* Xiang Gao,* Andreas Metz, l
Joshua Miller,®> ¥ Swagato Mukherjee,” Peter Petreczky,” Aurora Scapellato,® Fernanda Steffens,® and Yong Zhao* D)

i = L= m— .
2) Contender 1: Historic definition 7"3"/5

7—~[3(z, PS/“, AS/"‘) = A2 + (PS/“ . z)fig + m2z2/i7 - (AS/‘“ . z)fig

@ Contender 2: LI generalization of light-cone definition

H = Ay + (P% 2)Ag + (A% 2) Ag

Key fin din gs . b€ Formulation in terms of a new operator:

B s

Same functional form as LC GPD

* Lorentz covariant formalism for calculating qua

« Demonstrated non-uniqueness of LI definitions of quasi-GPDs
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