A new approach for computing GPDs from asymmetric frames

Shohini Bhattacharya RIKEN BNL 3 August 2023

In Collaboration with:

Krzysztof Cichy (Adam Mickiewicz U.) Martha Constantinou (Temple U.) Jack Dodson (Temple U.) Xiang Gao (ANL) Andreas Metz (Temple U.) Joshua Miller (Temple U.) Swagato Mukherjee (BNL) Peter Petreczky (BNL) Aurora Scapellato (Temple U.) Fernanda Steffens (Bonn U.) Yong Zhao (ANL) 40th International Symposium on Lattice Field Theory

Fermilab

Based on: PhysRevD.106.114512 & In Preparation

Generalized Parton Distributions (GPDs)

GPD correlator: Graphical representation

Definition: (See for example Diehl, hep-ph/0307382)

$$F^{[\Gamma]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

Motivation for GPD studies

Motivation for GPD studies

First Lattice QCD results of the x-dependent GPDs

5

First Lattice QCD results of the x-dependent GPDs

Our contribution in a nutshell:

Definitions of quasi-GPDs

Definition of quasi-GPDs in symmetric frames: (Historical)

$$F_{\lambda,\lambda'}^{0}|_{s} = \langle p_{s}',\lambda'|\bar{q}(-z/2)\gamma^{0}q(z/2)|p_{s},\lambda\rangle\Big|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$$
$$= \bar{u}_{s}(p_{s}',\lambda')\bigg[\gamma^{0}H_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s} + \frac{i\sigma^{0\mu}\Delta_{\mu,s}}{2M}E_{Q(0)}(z,P_{s},\Delta_{s})\big|_{s}\bigg]u_{s}(p_{s},\lambda)$$

Definitions of quasi-GPDs

Definitions of quasi-GPDs

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$F^{\mu}(z,P,\Delta) = \bar{u}(p_{f},\lambda') \left[\frac{P^{\mu}}{m} \mathbf{A_{1}} + mz^{\mu} \mathbf{A_{2}} + \frac{\Delta^{\mu}}{m} \mathbf{A_{3}} + im\sigma^{\mu z} \mathbf{A_{4}} + \frac{i\sigma^{\mu \Delta}}{m} \mathbf{A_{5}} + \frac{P^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_{6}} + mz^{\mu}i\sigma^{z\Delta} \mathbf{A_{7}} + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{m} \mathbf{A_{8}} \right] u(p_{i},\lambda)$$

$$\downarrow$$
Vector operator $F^{\mu}_{\lambda,\lambda'} = \langle p',\lambda' | \bar{q}(-z/2)\gamma^{\mu}q(z/2) | p,\lambda \rangle \Big|_{z=0,\vec{z}_{\perp}=\vec{0}_{\perp}}$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors) $A_i \equiv A_i(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2)$

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

Re-exploring historical definitions of quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)

Re-exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Explicit non-invariance from kinematics factors

Symmetric frame:

$$\begin{split} H_{\mathbf{Q}(0)}(z,P_s,\Delta_s)\big|_s &= \mathbf{A_1} + \frac{\Delta_s^0}{P_s^0}\mathbf{A_3} - \frac{\Delta_s^0 z^3}{2P_s^0 P_s^3}\mathbf{A_4} + \left(\frac{(\Delta_s^0)^2 z^3}{2M^2 P_s^3} - \frac{\Delta_s^0 \Delta_s^3 z^3 P_s^0}{2M^2 (P_s^3)^2} - \frac{z^3 \Delta_{\perp}^2}{2M^2 P_s^3}\right) \mathbf{A_6} \\ &+ \left(\frac{(\Delta_s^0)^3 z^3}{2M^2 P_s^0 P_s^3} - \frac{(\Delta_s^0)^2 \Delta_s^3 z^3}{2M^2 (P_s^3)^2} - \frac{\Delta_s^0 z^3 \Delta_{\perp}^2}{2M^2 P_s^0 P_s^3}\right) \mathbf{A_8} \end{split}$$

Asymmetric frame:

$$\begin{split} H_{\mathbf{Q}(0)}\Big|_{a}(z,P_{a},\Delta_{a}) &= \mathbf{A_{1}} + \frac{\Delta_{a}^{0}}{P_{avg,a}^{0}}\mathbf{A_{3}} - \left(\frac{\Delta_{a}^{0}z^{3}}{2P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{\Delta_{a}^{0}\Delta_{a}^{3}z^{3}}{4P_{avg,a}^{0}(P_{avg,a}^{3})^{2}}\right)\mathbf{A_{4}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{2}z^{3}}{2M^{2}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{4M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{P_{avg,a}^{0}\Delta_{a}^{0}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}}{2M^{2}P_{avg,a}^{3}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{0}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{z^{3}\Delta_{\perp}^{2}\Delta_{a}^{0}}{2M^{2}P_{avg,a}^{0}}\right)\mathbf{A_{6}} \\ &+ \left(\frac{(\Delta_{a}^{0})^{3}z^{3}}{2M^{2}P_{avg,a}^{0}P_{avg,a}^{3}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{3}\Delta_{a}^{3}z^{3}}{4M^{2}P_{avg,a}^{0}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{2M^{2}P_{avg,a}^{0}} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3}})} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3})}} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1}{(1 + \frac{\Delta_{a}^{3}}{2P_{avg,a}^{3})}} \frac{(\Delta_{a}^{0})^{2}\Delta_{a}^{3}z^{3}}{2M^{2}(P_{avg,a}^{3})^{2}} - \frac{1$$

Relation between light-cone GPD H & amplitudes:

Same functional forms QCD calculations of GPDs in asymmetric frames

Same functional forms QCD calculations of GPDs in asymmetric frames

Same functional forms **QCD** calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

 $\widetilde{F}^{3}(z, P^{s/a}, \Delta^{s/a}) = \langle p_f; \lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^3 \gamma_5 \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p_i; \lambda \rangle$

$$= \bar{u}^{s/a}(p_f^{s/a},\lambda') \bigg[\gamma^3 \gamma_5 \,\widetilde{\mathcal{H}}_3^{s/a}(z,P^{s/a},\Delta^{s/a}) + \frac{\Delta^3 \gamma_5}{2m} \,\widetilde{\mathcal{E}}_3^{s/a}(z,P^{s/a},\Delta^{s/a}) \bigg] u^{s/a}(p_i^{s/a},\lambda)$$

Helicity quasi-GPDs

Definition: (Historic)

Lorentz covariant formalism

Novel parameterization of position-space matrix element:

$$\widetilde{F}^{\mu} = \overline{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu} e^{z\Delta}}{m} \widetilde{A}_{1}^{\dagger} + \gamma^{\mu} \gamma_{5} \widetilde{A}_{2}^{\dagger} + \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{3}^{\dagger} + mz^{\mu} \widetilde{A}_{4}^{\dagger} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5}^{\dagger} \right) + m \not z \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{6}^{\dagger} + mz^{\mu} \widetilde{A}_{7}^{\dagger} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8}^{\dagger} \right) \right] u(p_{i},\lambda)$$

Axial-vector operator $\widetilde{F}^{\mu}_{\lambda,\lambda'} = \langle p',\lambda' | \overline{q}(-z/2) \gamma^{\mu} \gamma_{5} q(z/2) | p,\lambda \rangle \Big|_{z=0, \vec{z}_{\perp} = \vec{0}_{\perp}}$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures (similar to vector case)

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$\widetilde{\mathcal{H}}_{3}(z, P^{s/a}, \Delta^{s/a}) = \widetilde{A}_{2} - z^{3} P^{3, s/a} \widetilde{A}_{6} - m^{2} (z^{3})^{2} \widetilde{A}_{7} - z^{3} \Delta^{3, s/a} \widetilde{A}_{8}$$

Same functional form in both symmetric & asymmetric frames

Frame-independence of $\gamma^3 \gamma_5$ understood by considering "transverse boosts" that preserve the 3-component

Helicity quasi-GPDs

to a Lorentz-invariant status

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$\begin{aligned} \widetilde{\mathcal{H}}_{3}(z, P^{s/a}, \Delta^{s/a}) &= \widetilde{A}_{2} - z^{3} P^{3, s/a} \widetilde{A}_{6} - m^{2} (z^{3})^{2} \widetilde{A}_{7} - z^{3} \Delta^{3, s/a} \widetilde{A}_{8} \\ &= \widetilde{A}_{2} + (P^{s/a} \cdot z) \widetilde{A}_{6} + m^{2} z^{2} \widetilde{A}_{7} + (\Delta^{s/a} \cdot z) \widetilde{A}_{8} \end{aligned}$$

Features:

•

Kinematical prefactor of amplitudes can be uniquely promoted

Same functional form in both symmetric & asymmetric frames

The historic definition involving $\gamma^3\gamma_5\,$ is a

contender for a Lorentz invariant definition

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$\widetilde{\mathcal{E}}_{3}(z, P^{s/a}, \Delta^{s/a}) = 2 \frac{P^{3, s/a}}{\Delta^{3, s/a}} \widetilde{\mathbf{A}}_{3} + 2m^{2} \frac{z^{3}}{\Delta^{3, s/a}} \widetilde{\mathbf{A}}_{4} + 2\widetilde{\mathbf{A}}_{5}$$

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$
- To calculate $\widetilde{\mathcal{E}}$ at $\xi = 0$ using above expression, one needs to determine the zero-skewness limit of \widetilde{A}_3/ξ , \widetilde{A}_4/ξ (well-defined limit)

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$\widetilde{\mathcal{E}}_{3}(z, P^{s/a}, \Delta^{s/a}) = 2 \frac{P^{3, s/a}}{\Delta^{3, s/a}} \widetilde{\boldsymbol{A}}_{3} + 2m^{2} \frac{z^{3}}{\Delta^{3, s/a}} \widetilde{\boldsymbol{A}}_{4} + 2\widetilde{\boldsymbol{A}}_{5}$$

See Joshua's talk:

Validation of formalism & Lattice QCD results

- To calculate \mathcal{E} at $\xi = 0$ using above expression, one needs to
 - determine the zero-skewness limit of $\widetilde{A}_3/\xi, \ \widetilde{A}_4/\xi$ (well-defined limit)

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

20

