Applying the Worldvolume Hybrid Monte Carlo method to the complex ϕ^4 theory at finite density

Yusuke Namekawa (Hiroshima Univ)

in collaboration with

Masafumi Fukuma (Kyoto Univ)

Contents

1	Introduction	
2	Application of WV-HMC to complex ϕ^4 at finite density	7
3	Summary	13

1 Introduction

Several methods have been proposed to overcome the sign problem

- Complex Langevin (CL) method Parisi(1983), Klauder(1984),...
 Low cost, works only in limited parameter regions
 Conditions for correct CL result have been clarified Aarts et al.(2009), Nishimura, Shimasaki(2015), Nagata et al.(2016)
- Lefschetz thimble method Witten(2010),...
 - \diamondsuit Original Lefschetz thimble method Cristoforetti et al.(2012),Fujii et al.(2013),Alexandru et al.(2015),... [Middle cost, hard to solve the sign and ergodicity problems simultaneously]
 - ♦ Tempered Lefschetz thimble method Fukuma, Umeda (2017),...
 [Middle cost, solves the sign and ergodicity problems simultaneously]
 - ♦ Worldvolume Hybrid Monte Carlo (WV-HMC) method Fukuma, Matsumoto (2020),...
 [Low cost, solves the sign and ergodicity problems simultaneously]
- Path Optimization Method Mori, Kashiwa, Ohnishi (2017), Alexandru et al. (2018),...
 Middle cost, searches for the best path via machine learning, combined with parallel tempering for the ergodicity problem
- Tensor Network method Levin, Nave(2007),...
 High cost, non-MC approach

[How is the sign problem resolved by Lefschetz thimble method?]

• Sign problem is reduced if Im $S(z_t)$ is almost constant

$$\langle \mathcal{O} \rangle = \frac{\int_{\Sigma_0} dx \, \mathcal{O}(x) e^{-S(x)}}{\int_{\Sigma_0} dx \, e^{-S(x)}} = \frac{\int_{\Sigma_t} dz_t \, \mathcal{O}(z_t) e^{-S(z_t)}}{\int_{\Sigma_t} dz_t \, e^{-S(z_t)}}$$

Cauchy's theorem ensures the equality

Flow eq.
$$\dot{z}_t = \overline{\partial S(z_t)}, \ z_{t=0} = x$$

$$\operatorname{Im} S(z_t)$$
 is const along the flow $\begin{bmatrix} [S(z_t)]^{\cdot} = \partial S(z_t) \dot{z}_t = |\partial S(z_t)|^2 \geq 0 \\ \therefore [\operatorname{Re} S(z_t)]^{\cdot} \geq 0, \ [\operatorname{Im} S(z_t)]^{\cdot} = 0 \end{bmatrix}$

On Lefschetz thimbles, $\text{Im}S(z_t) = \text{const so that } \int dz_t \exp(-\text{Re}S(z_t) - i \, \text{Im}S(z_t))$ can be computed efficiently

- → This is not the end of the story due to Ergodicity problem
 - Ergodicity problem : Zeros of $\exp(-S(z_t))$ produce infinitely high potential, which restricts movement of configurations

- solves the sign problem and ergodicity problem simultaneously
- significantly reduces the computational cost compared with other Lefschetz thimble methods

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{\int_{\Sigma_0} dx \, \mathcal{O}(x) e^{-S(x)}}{\int_{\Sigma_0} dx \, e^{-S(x)}} = \frac{\int_{\Sigma_t} dz_t \, \mathcal{O}(z_t) e^{-S(z_t)}}{\int_{\Sigma_t} dz_t \, e^{-S(z_t)}} \\ &= \frac{\int_{\mathcal{R}} dt dz_t \, e^{-W(t)} e^{-S(z_t)} \mathcal{O}(z_t)}{\int_{\mathcal{R}} dt dz_t \, e^{-W(t)} e^{-S(z_t)}} \,, \quad \mathbf{W}(t) = \text{arbitrary function} \end{split}$$

- Cauchy's theorem ensures the equalities
- Enlarge integration surface of the original $\Sigma_0 = \mathbb{R}^N[N: \text{degrees of freedom}]$ to worldvolume (orbit of integration surface) $\mathcal{R} := \bigcup_{0 \le t \le T} \Sigma_t$
 - ightarrow Perform HMC on the worldvolume ${\cal R}$

[WV-HMC algorithm 1/2 : overview]

(1) Generate random momentum π in tangent space of the worldvolume $T_z\mathcal{R}$

$$\tilde{\pi}$$
 with $P(\tilde{\pi}) = \exp(-\tilde{\pi}^{\dagger} \tilde{\pi}/2)$
 $\pi = \Pi_{T_z \mathcal{R}} \ \tilde{\pi}, \quad \Pi_{T_z \mathcal{R}} : \text{projection onto } T_z \mathcal{R}$

(2) RATTLE (constrained molecular dynamics)

$$\pi_{1/2} = \pi - \frac{\Delta s}{2} \partial(\text{Re}S(z) - W(t(z))) - \lambda$$

$$z' = z + \Delta s \, \pi_{1/2}$$

$$\pi' = \Pi_{\mathcal{R}} \left(\pi_{1/2} - \frac{\Delta s}{2} \partial(\text{Re}S(z') - W(t(z'))) \right)$$

 $\Pi_{\mathcal{R}}$: projection onto \mathcal{R}

 λ is determined s.t. z' comes on ${\cal R}$

i.e.,
$$z_{t+h}(x+u)=z'$$
 is realized by choice of (h,u,λ) $(h,u,\lambda)\to (h,u,\lambda)+\Delta(h,u,\lambda)$: Newton method

(3) Metropolis accept/reject

[WV-HMC algorithm 2/2 : flow equations] Projections and RATTLE consist of the following flow equations

• Configuration flow eq. maps $x = (x^i) \in \mathbb{R}^N \to z_t(x) \in \mathbb{C}^N$

$$\dot{z}_t = \overline{\partial S(z_t)}, \ z_{t=0} = x \ O(N^1) \cos t$$

• Vector flow eq. maps $u \to v$

$$\begin{split} H(z_t) := & \, \partial S(z_t) & : \text{ Hessian} \\ \dot{v}_t = & \, \overline{H(z_t)v_t}, \ \, v_{t=0} = u \\ & \, O(N^1) \text{ cost if } H \text{ is a sparse matrix,} \\ & \text{ such as that of complex } \phi^4 \text{ at finite density} \\ & \, \left(O(N^2) \text{ cost if } H \text{ is a dense matrix}\right) \end{split}$$

 \Diamond Total computational cost is O(N) for complex ϕ^4 at finite density

[Complex ϕ^4 at finite density]

- $\mu \neq 0$ makes the action complex \rightarrow sign problem
- Good testbed for several methods

```
Complex Langevin method D=4: Aarts(2005)
```

Path optimization method D=2: Mori et al.(2017)

Tensor renormalization group method D=2: Kadoh et al.(2019), D=4: Akiyama et al.(2020)

$$\begin{split} S_{\text{lat}}^{\text{Euclid}}[\phi &= (z+iw)/\sqrt{2}] & z, w \in \mathbb{R} \to \mathbb{C} \\ &= \sum_{n} \left[-\sum_{\nu=1}^{D-1} (z_{n+\nu} z_n + w_{n+\nu} w_n) \right. \\ & + \cosh(\mu)(z_{n+\hat{0}} z_n + w_{n+\hat{0}} w_n) + i \sinh(\mu)(z_{n+\hat{0}} w_n - w_{n+\hat{0}} z_n) \right. \\ & \left. + \frac{2D + m^2}{2} (z_n^2 + w_n^2) + \frac{\lambda}{4} (z_n^2 + w_n^2)^2 \right], \quad D = 2, 4 \end{split}$$

[Flow equations]

Configuration flow eq.

Vector flow eq.

 \diamondsuit Hessian H is a sparse matrix, which has non-zero values only at diagonal and semi-diagonal parts. \to The cost is $O(N^1)$.

[Result: numerical cost of configuration generation] We confirmed the cost of WV-HMC is ${\cal O}(N^1)$ for complex ϕ^4 at finite density

[Simulation parameters]

- Lattice size : $4^4, 6^4 (D = 4)$
- m = 0.1, $\lambda = 1.0$
- T = 0.08
- $N_{\rm conf} = 1000 2000$ for 4^4 , 200 for 6^4

[Observables]

$$\langle n \rangle := \frac{1}{V} \partial_{\mu} \log Z$$

$$= \frac{1}{V} \left\langle \sum_{n} (\sinh(\mu)(z_{n+0}z_n + w_{n+0}w_n) + i \cosh(\mu)(z_{n+0}w_n - w_{n+0}z_n)) \right\rangle$$

$$\left\langle |\phi|^2 \right\rangle := \frac{1}{V} \left\langle \sum_{n} \left(\frac{z_n - iw_n}{\sqrt{2}} \right) \left(\frac{z_n + iw_n}{\sqrt{2}} \right) \right\rangle = \frac{1}{V} \left\langle \frac{1}{2} \sum_{n} (z_n^2 + w_n^2) \right\rangle$$

[Tuning of W(t)]

- With W(t)=0, configurations come to small t region $\to W(t)$ is tuned s.t. configurations move around small and large t regions
- We employed a simple ansatz $W(t) = -\gamma t$, $\gamma = \text{const}$ with reflection or slopes at boundaries of t

$$\langle \mathcal{O} \rangle = \frac{\int_{\mathcal{R}} dt dz_t \, e^{-W(t)} e^{-S(z_t)} \mathcal{O}(z_t)}{\int_{\mathcal{R}} dt dz_t \, e^{-W(t)} e^{-S(z_t)}} \,, \quad \mathbf{W}(t) = \text{arbitrary function}$$

Yusuke Namekawa (Hiroshima U) — 11 / 13 — Lattice 2023

[Result: number density by WV-HMC]

- WV-HMC results agree with Complex Langevin ← done by ourselves (satisfying the convergence condition in the parameter region we consider)
- TRG $(D_{\rm cut}=45)$ deviates from WV-HMC and CL results Akiyama et al. (2020) (probably due to too small $D_{\rm cut}=45)$

→ We plan to check the difference on larger lattice volumes

Yusuke Namekawa (Hiroshima U) — 12 / 13 — Lattice 2023

3 Summary

- We confirmed WV-HMC actually reduces the cost $O(N^3) \to O(N^1)$ for complex ϕ^4 at finite density
- We measured observables $(\langle n \rangle, \langle |\phi|^2 \rangle)$ for comparison with other methods
 - ♦ WV-HMC results agree with Complex Langevin.
 - \diamondsuit TRG $(D_{\rm cut}=45)$ Akiyama et al.(2020) deviate from WV-HMC and CL (probably due to too small $D_{\rm cut}=45)$
 - → Check the deviation with larger lattice volumes

[Future applications]

- Ongoing: apply WV-HMC to system with dynamical fermions Fukuma,YN,... \rightarrow See the next talk by Masafumi Fukuma
- Ongoing: apply WV-HMC to gauge theory (1-site model Fukuma(in preparation), pure YM $+ \theta$ -term Fukuma, Kanamori, YN,..., finite density QCD)
- Apply WV-HMC to real-time system \leftarrow Real-time system has a sign problem due to $\exp(iS) \in \mathbb{C}$.

Appendix