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1 Introduction

Several methods have been proposed to overcome the sign problem

e Complex Langevin (CL) method parisi(1983),Klauder(1984), ..
Low cost, works only in limited parameter regions
Conditions for correct CL result have been clarified Aarts et al.(2009), Nishimura Shimasaki(2015), Nagata et al.(2016)
o Lefschetz thimble method witten(2010),...
- < Original Lefschetz thimble method cristoforetti et al.(2012), Fujii et al.(2013),Alexandru et al.(2015),..
[ Middle cost, hard to solve the sign and ergodicity problems simultaneously |

> Tempered Lefschetz thimble method  Fukuma Umeda(2017)....
| Middle cost, solves the sign and ergodicity problems simultaneously |

> Worldvolume Hybrid Monte Carlo (WV-HMC) method Fukuma Matsumoto(2020),...
| Low cost, solves the sign and ergodicity problems simultaneously |

e Path Optimization Method MoriKashiwa Ohnishi(2017),Alexandru et al.(2018),...
Middle cost, searches for the best path via machine learning,
combined with parallel tempering for the ergodicity problem

e Tensor Network method Levin,Nave(2007)....
[ High cost, non-MC approach |
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[ How is the sign problem resolved by Lefschetz thimble method? |
e Sign problem is reduced if Im S(z;) is almost constant

zero of e 17

on dx O(:B)e_s(x) fEt dzy (’)(zt)e_s(zt)

on dx e—S) fEt dzy e—S(2t)

T T X
Cauchy’s theorem ensures the equality move of config |

(0) =

Flow eq. 2: = 0S5(2¢), zi=0 =«

ImS(z:) is const along the flow

[S(z:)] = 0S(z:) 2 = |0S(z:)]* > 0 ]
o [ReS(zt)] =0, [ImS(z:)] =0

On Lefschetz thimbles, ImS(z;) = const so that [ dz; exp(—ReS(z:)—iIlmS(2¢))
can be computed efficiently
— This is not the end of the story due to Ergodicity problem

e Ergodicity problem :
Zeros of exp(—S(z¢)) produce infinitely high potential, which restricts
movement of configurations
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[ Worldvolume Hybrid Monte Carlo (WV-HMC) method | FukumaMatsumoto(2020),...

e solves the sign problem and ergodicity problem simultaneously

e significantly reduces the computational cost compared with other
Lefschetz thimble methods

on dx O(:B)e_s(x) th dzy (’)(zt)e_s(zt)

<O> — —S(x — —S(z : '
on dx e—5() fEt dz; e—5(zt) " %

- dtdz e~ W e=5=) O (2,) \ _ /
— fR dtdzt e—W(t)e—S(Zt) , W (t) = arbitrary function / [ %

e Cauchy’s theorem ensures the equalities

e Enlarge integration surface of the original g = R[NV : degrees of freedom]

to worldvolume (orbit of integration surface) R := U it
0<t<T
— Perform HMC on the worldvolume R
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| WV-HMC algorithm 1/2 : overview ]
(1) Generate random momentum 7 in tangent space

of the worldvolume T,’R

7 with P(7) = exp(—7'#/2)

w=1r,r ®, Ilr,® : projection onto TR

(2) RATTLE (constrained molecular dynamics)

T1/g = T — %8(1%65(2) —W(it(z))) — A

/

2= z+ Asmyo

A
7 = T (m/e = ST0MS() - W)
Iz : projection onto R

)\ is determined s.t. 2’ comes on R

i.e., zeon(x + u) = 2’ is realized by choice of (h,u, \)
(hy,u, A) = (h,u, \) + A(h,u, \) : Newton method

(3) Metropolis accept/reject
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| WV-HMC algorithm 2/2 : flow equations |
Projections and RATTLE consist of the following flow equations

o Configuration flow eq. maps z = (z') € RY — z(z) € CV

2 = 0S(2), zt—=0 =x O(N"') cost
e \ector flow eq. maps u — v

H(zt) :=005(zt) . Hessian

Uy = H(z¢)ve, vi=0 = u
O(N') cost if H is a sparse matrix,
such as that of complex ¢* at finite density
(O(N?) cost if H is a dense matrix)

$ Total computational cost is O(N) for complex ¢* at finite density
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2 Application of WV-HMC to complex ¢* at finite density

[ Complex ¢* at finite density ]

e /. # 0 makes the action complex — sign problem

e Good testbed for several methods
Complex Langevin method D=4 : Aarts(2005)
Lefschetz thimble method D=4 : Cristoforetti et al.(2013), Fujii et al.(2013)
Path optimization method D=2 : Mori et al.(2017)

Tensor renormalization group method D=2 : Kadoh et al.(2019), D=4 : Akiyama et al.(2020)

souclidig — (2 4 jw) /V?2) zweER = C
D—1
= Z - Z (Zn—l—uzn + wn—l—uwn)
n vr=1

+ cosh(u)(z, L g2n + W, gwn) + isinh(u)(z, gwn —w,_ 52n)
2D + m?

A
(n +wn) + 7(en +wp)*|, D =2,4
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[ Flow equations |

e Configuration flow eq.

(o ) =( Gsminem) )

B.S'lat(z, w)

3
= — COSh(’U')(Zn—I—(j + Zn—f)) + isinh(,u,)(wn_é — wn—|—6) — Z {(zn—l—l/ + zn—y)}

8Zn vr=1

+ (8 4+ m2)zn + A(zi + wi)zn
e \ector flow eq.
U, . . w Un _ (Hu),,
( Dm >_Hmn< ] )( Un ) ( (Hv),, )
8281at(z,w) 825’1at(z,w)

(Hu)m = Un + Un

= — cosh(,u)(um_é + um—|—6) — ’L'sinh(,u)(vm_() — vm+©)

3
= > ey umg) + (B + M)+ AB20, + wl)) um + 23 zmwmom

vr=1

{> Hessian H is a sparse matrix, which has non-zero values only at
diagonal and semi-diagonal parts. — The cost is O(N1).
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| Result: numerical cost of configuration generation |
We confirmed the cost of WV-HMC is O(N*') for complex ¢* at finite density
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[ Simulation parameters |
o Lattice size : 4*,6* (D = 4)
e m=0.1,A=1.0
e 7'=0.08
o Neont = 1000 — 2000 for 4%, 200 for 6* S I Y

[ Observables ]

1
(n) := Va,,b log Z

v

(167) =+ <Z (=) (> j;”)> - <% > +wi>>

1
= <Z(sinh(,u)(zn+gzn + Wy oWy ) + tcosh(p)(zptown — 'wn_|_ozn))>
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[ Tuning of W (t) ]

e With W (t) = 0, configurations come to small ¢ region
— W (t) is tuned s.t. configurations move around small and large ¢ regions

e We employed a simple ansatz W (t) = —~t, v = const with reflection or
slopes at boundaries of ¢

dtdz, eV e 5= O (2
<O> — fR ! ( t) s W (t) = arbitrary function

fR dtdz; e=W () e—5(zt)
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| Result: number density by WV-HMC |

e WV-HMC results agree with Complex Langevin <— done by ourselves
(satisfying the convergence condition in the parameter region we consider)

© TRG (Dcut = 45) deviates from WV-HMC and CL results aciyama et al. (2020)
(probably due to too small Dyt = 45)

0.5
WV-HMC, 4;<4x4x4 (Nconf=1006) —e—i
WV-HMC, 6x6x6x6 (Nconf=200)
04 CLM, 4x4x4x4 (Nconf=10000) - - - -
CLM, 6x6x6x6 (Nconf=10000)
CLM, 8x8x8x8 (Nconf=10000) - - - -
03| TRG [Akiyama et al.(2020)], 4x4x4x4
TRG [Akiyama et al.(2020)], 8x8x8x8
TRG [Akiyama et al.(2020)], 1024*
L]
E 0.2

4
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— We plan to check the difference on larger lattice volumes
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3 Summary

e We confirmed WV-HMC actually reduces the cost O(N®) — O(N*)
for complex ¢* at finite density

e We measured observables ((n), (|¢|*)) for comparison with other methods

& WV-HMC results agree with Complex Langevin.

$ TRG (Dcut = 45) Akiyema et al(2020) deviate from WV-HMC and CL
(probably due to too small D, = 45)
— Check the deviation with larger lattice volumes

[Future applications]

e Ongoing: apply WV-HMC to system with dynamical fermions rukumayn...
— See the next talk by Masafumi Fukuma

e Ongoing: apply WV-HMC to gauge theory (1-site model Fukuma(in preparation),
pure YM + O-term rukuma kanamorivn,., finite density QCD)

e Apply WV-HMC to real-time system
+ Real-time system has a sign problem due to exp(iS) € C.
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Appendix
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