Degrees of freedom in various charm subsectors from Lattice QCD

Sipaz Sharma

F.Karsch, P.Petreczky, C.Schmidt

Lattice 2023, Fermilab, Batavia, Illinois, USA

Motivation

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019; Borsanyi et al., 2020; Kotov et al., 2021]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}$.

Motivation

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019; Borsanyi et al., 2020; Kotov et al., 2021]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}$.
- Questions which heavy-ion experiments aim to answer:
 - \bullet whether the open-charm states can exist above $T_{\rm pc}$ or do melt at $T_{\rm pc}.$
 - \bullet do charm quarks start appearing at $T_{\rm pc}$ or not.

2/22

Motivation

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019; Borsanyi et al., 2020; Kotov et al., 2021]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}$.
- Questions which heavy-ion experiments aim to answer:
 - \bullet whether the open-charm states can exist above $T_{\rm pc}$ or do melt at $T_{\rm pc}.$
 - \bullet do charm quarks start appearing at $T_{pc}\xspace$ or not.
- Charm fluctuations (cumulants) calculated in the framework of Lattice QCD can receive enhanced contributions due the existence of not-yet-discovered open-charm states; it is possible to compare this enhancement to the HRG calculations.

▶ HRG describes a non-interacting gas of hadron resonances. HRG has been found to be a good approximation to QCD results for $T < T_{pc}$.

- ▶ HRG describes a non-interacting gas of hadron resonances. HRG has been found to be a good approximation to QCD results for $T < T_{\rm pc}$.
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$. [C. R. Allton et al., 2005]

- ▶ HRG describes a non-interacting gas of hadron resonances. HRG has been found to be a good approximation to QCD results for $T < T_{pc}$.
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$. [C. R. Allton et al., 2005]

$$M_{C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^{2}} \sum_{i} g_{i} \left(\frac{m_{i}}{T}\right)^{2} K_{2}(m_{i}/T) \cosh(Q_{i}\hat{\mu}_{Q} + S_{i}\hat{\mu}_{S} + C_{i}\hat{\mu}_{C})$$
[A. Bazavov et al., 2014]

3/22

- ▶ HRG describes a non-interacting gas of hadron resonances. HRG has been found to be a good approximation to QCD results for $T < T_{pc}$.
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$. [C. R. Allton et al., 2005]

$$M_{\rm C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{\rm i} g_{\rm i} \left(\frac{m_{\rm i}}{T}\right)^2 K_2(m_{\rm i}/T) \cosh(Q_{\rm i}\hat{\mu}_{\rm Q} + S_{\rm i}\hat{\mu}_{\rm S} + C_{\rm i}\hat{\mu}_{\rm C})$$
[A Bazavov et al. 2014]

 \blacktriangleright For Baryons the argument of \cosh changes to

 $B_i\hat{\mu}_B+Q_i\hat{\mu}_Q+S_i\hat{\mu}_S+C_i\hat{\mu}_C$

 Boltzmann approximation is good in the charm sector not just for mesons and baryons but also for a charm-quark gas.

- ▶ HRG describes a non-interacting gas of hadron resonances. HRG has been found to be a good approximation to QCD results for $T < T_{\rm pc}$.
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$. [C. R. Allton et al., 2005]

$$M_{\rm C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{\rm i} g_{\rm i} \left(\frac{m_{\rm i}}{T}\right)^2 K_2(m_{\rm i}/T) \cosh(Q_{\rm i}\hat{\mu}_{\rm Q} + S_{\rm i}\hat{\mu}_{\rm S} + C_{\rm i}\hat{\mu}_{\rm C})$$
[A Bazavov et al. 2014]

 \blacktriangleright For Baryons the argument of \cosh changes to

$$B_{i}\hat{\mu}_{B} + Q_{i}\hat{\mu}_{Q} + S_{i}\hat{\mu}_{S} + C_{i}\hat{\mu}_{C}$$

 Boltzmann approximation is good in the charm sector not just for mesons and baryons but also for a charm-quark gas.

•
$$\hat{\mu}_{X} = \mu/T$$
, $X \in \{B, Q, S, C\}$.

Generalized susceptibilities of the conserved charges

$$M_{\rm C}({\rm T},\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{i} g_i \left(\frac{m_i}{{\rm T}}\right)^2 K_2(m_i/{\rm T}) \cosh(Q_i \hat{\mu}_{\rm Q} + S_i \hat{\mu}_{\rm S} + C_i \hat{\mu}_{\rm C})$$

- ► $K_2(x) \sim \sqrt{\pi/2x} e^{-x} [1 + O(x^{-1})]$. If $m_i \gg T$, then contribution to P_C will be exponentially suppressed.
- ▶ Λ_c^+ mass ~ 2286 MeV, Ξ_{cc}^{++} mass ~ 3621 MeV. At T_{pc} , contribution to B_C from Ξ_{cc}^{++} will be suppressed by a factor of 10^{-4} in relation to Λ_c^+ .

Generalized susceptibilities of the conserved charges

$$M_{\rm C}({\rm T},\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{\rm i} g_{\rm i} \left(\frac{m_{\rm i}}{{\rm T}}\right)^2 K_2(m_{\rm i}/{\rm T}) \cosh({\rm Q}_{\rm i}\hat{\mu}_{\rm Q} + S_{\rm i}\hat{\mu}_{\rm S} + C_{\rm i}\hat{\mu}_{\rm C})$$

- ► $K_2(x) \sim \sqrt{\pi/2x} e^{-x} [1 + O(x^{-1})]$. If $m_i \gg T$, then contribution to P_C will be exponentially suppressed.
- ▶ Λ_c^+ mass ~ 2286 MeV, Ξ_{cc}^{++} mass ~ 3621 MeV. At T_{pc} , contribution to B_C from Ξ_{cc}^{++} will be suppressed by a factor of 10^{-4} in relation to Λ_c^+ .
- Dimensionless generalized susceptibilities of conserved charges:

$$\chi_{\rm klmn}^{\rm BQSC} = \frac{\partial^{(\rm k+l+m+n)} \left[{\rm P} \left(\hat{\mu}_{\rm B}, \hat{\mu}_{\rm Q}, \hat{\mu}_{\rm S}, \hat{\mu}_{\rm C} \right) \, / {\rm T}^4 \right]}{\partial \hat{\mu}_{\rm B}^{\rm k} \, \partial \hat{\mu}_{\rm Q}^{\rm l} \, \partial \hat{\mu}_{\rm S}^{\rm m} \, \partial \hat{\mu}_{\rm C}^{\rm n}} \left|_{\overrightarrow{\mu} = 0} \right|_{\overrightarrow{\mu} = 0}$$

Generalized susceptibilities of the conserved charges

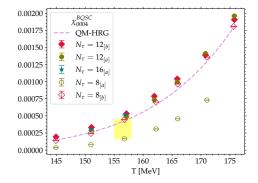
$$M_{\rm C}({\rm T},\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{\rm i} g_{\rm i} \left(\frac{m_{\rm i}}{{\rm T}}\right)^2 K_2(m_{\rm i}/{\rm T}) \cosh({\rm Q}_{\rm i}\hat{\mu}_{\rm Q} + S_{\rm i}\hat{\mu}_{\rm S} + C_{\rm i}\hat{\mu}_{\rm C})$$

 Dimensionless generalized susceptibilities of conserved charges are given by,

$$\chi_{\text{klmn}}^{\text{BQSC}} = \frac{\partial^{(\text{k+l+m+n})} \left[P\left(\hat{\mu}_{\text{B}}, \hat{\mu}_{\text{Q}}, \hat{\mu}_{\text{S}}, \hat{\mu}_{\text{C}}\right) / T^{4} \right]}{\partial \hat{\mu}_{\text{B}}^{\text{k}} \partial \hat{\mu}_{\text{Q}}^{\text{l}} \partial \hat{\mu}_{\text{S}}^{\text{m}} \partial \hat{\mu}_{\text{C}}^{\text{m}}} \partial \hat{\mu}_{\text{C}}^{\text{m}}} \left|_{\vec{\mu}=0} \frac{\chi_{mn}^{BC}}{\chi_{\text{m00n}}^{BC}} = B_{C,1} + 2^{n} B_{C,2} + 3^{n} B_{C,3} \simeq B_{C,1}$$

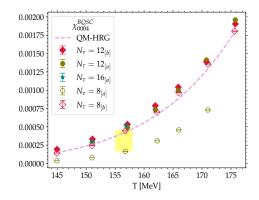
 At present, we have gone upto fourth order in calculating various cumulants.

Continuum limit



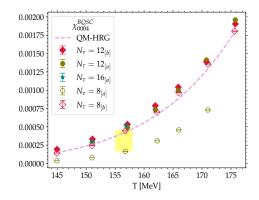
 \blacktriangleright Two different LCPs: a) charmonium mass, b) $\rm m_c/m_s$

Continuum limit



Absolute predictions in the charm sector are particularly sensitive to the precise tuning of the bare input quark masses.

Continuum limit

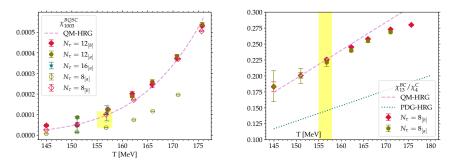


- Absolute predictions in the charm sector are particularly sensitive to the precise tuning of the bare input quark masses.
- Different hadrons have different lattice-cut off effects, therefore, taking the continuum limit is mandatory.

Sipaz Sharma

Bielefeld University

Ratios calculated using different LCPs



Sensitivity to the choice of LCP cancels to a large extent in the ratios
 stick to the ratios.

Ratios independent of the hadron spectrum

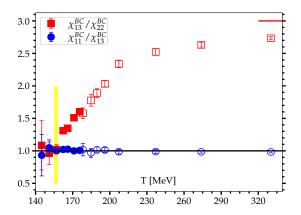
▶ Irrespective of the details of the baryon mass spectrum, in the validity range of HRG, $\chi_{mn}^{BC}/\chi_{kl}^{BC} = 1$, $\forall (m + n), (k + l) \in$ even.

9/22

Ratios independent of the hadron spectrum

- ▶ Irrespective of the details of the baryon mass spectrum, in the validity range of HRG, $\chi_{mn}^{BC}/\chi_{kl}^{BC} = 1$, $\forall (m + n), (k + l) \in$ even.
- ▶ $\chi_{1n}^{BC}/\chi_{1l}^{BC} = 1$, $\forall n, l \in \text{odd}$, for the entire temperature range.

Change in the charm degrees of freedom



► States with fractional B start appearing near T_{pc}. Is it possible to determine this fractional B?

Sipaz Sharma

Bielefeld University

10/22

Baryonic and mesonic contributions to P_C

In the low temperature range, where HRG works,

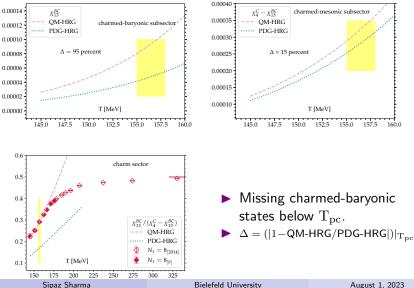
χ^{BC}₁₃ is the partial pressure from the charmed-baryonic subsector.
 χ^C₄ − χ^{BC}₁₃ can be interpreted as the partial pressure from the charmed-mesonic subsector.

Baryonic and mesonic contributions to P_C

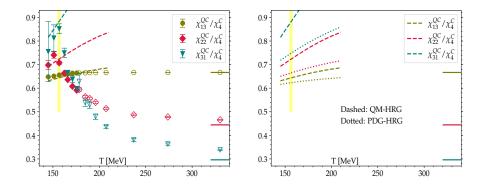
In the low temperature range, where HRG works,

- ▶ Unlike the previous quantities shown, ratios such as $\chi_{13}^{BC}/(\chi_4^C \chi_{13}^{BC})$ will partially depend upon the hadron spectrum.

Ratios of baryonic and mesonic contributions to P_C

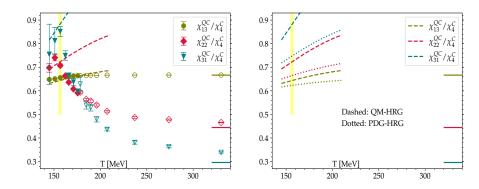


Electrically-charged-charm subsector



▶ With now available statistics, possibility of distinguishing |Q| = 0, 1, 2 charm subsectors in the hadronic phase.

Electrically-charged-charm subsector



 ▶ Ratio of QM-HRG/PDG-HRG increases with increasing Q-moments ⇒ |Q| = 2 sector more sensitive to 'missing resonances'.
 ▶ χ^{QC}₂₂ and χ^{QC}₃₁ give evidence for 'missing resonances'.

Sipaz Sharma

Bielefeld University

Electrically-charged-charm subsector



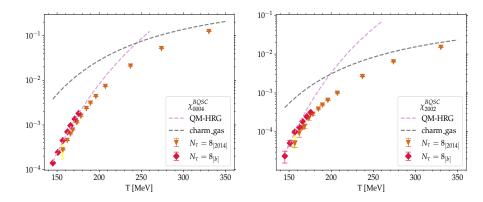
Ratio of QM-HRG/PDG-HRG increases with increasing Q-moments.
 Close to freeze-out, an enhancement over the PDG expectation in the fractional contribution of the |Q| = 2 (Σ_c⁺⁺) charm subsector to the total charm partial pressure.

Sipaz Sharma

Bielefeld University

Approach to free charm-quark gas limit

$$\begin{split} P_{c}(T,\overrightarrow{\mu}) &= \frac{3}{\pi^{2}} \bigg(\frac{m_{c}}{T}\bigg)^{2} K_{2}(m_{c}/T) cosh \bigg(\frac{2}{3}\hat{\mu}_{Q} + \frac{1}{3}\hat{\mu}_{B} + \hat{\mu}_{C}\bigg) \\ m_{c} &= 1.27 \text{ GeV}. \end{split}$$



Sipaz Sharma

Bielefeld University

August 1, 2023 16 / 22

Charm degrees of freedom in the intermediate T range

Quasi-particle model:

$$\begin{split} P^{C}(T,\hat{\mu}_{C},\hat{\mu}_{B})/T^{4} &= P^{C}_{M}(T) cosh(\hat{\mu}_{C}) + P^{C}_{B}(T) cosh(\hat{\mu}_{C} + \hat{\mu}_{B}) \\ &+ P^{C}_{q}(T) cosh(\hat{\mu}_{C} + \hat{\mu}_{B}/3) \end{split}$$

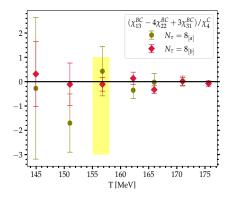
$$\begin{split} P_{q}^{C} &= 9(\chi_{13}^{BC} - \chi_{22}^{BC})/2 \\ P_{B}^{C} &= (3\chi_{22}^{BC} - \chi_{13}^{BC})/2 \\ P_{M}^{C} &= \chi_{4}^{C} + 3\chi_{22}^{BC} - 4\chi_{13}^{BC} \end{split}$$

Constraint on cumulants in a simple quasi-particle model:

$$c = \chi_{13}^{BC} + 3\chi_{31}^{BC} - 4\chi_{22}^{BC} = 0$$

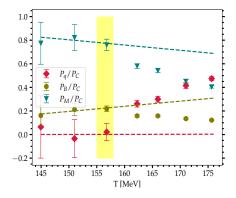
[S. Mukherjee et al., 2016]

Quasi-particle model



The constraint holds true \implies quasi-particle states with B = 0, 1 or 1/3 exist in the intermediate temperature range.

Charm-quark-like excitations in QGP



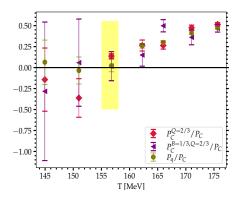
Right after $T_{\rm pc},~P_{\rm q}$ starts contributing to $P_{\rm C}$, which is compensated by a reduction (and deviation from HRG) in the fractional contribution of the hadron-like states to $P_{\rm C}.$

Charm-quark-like excitations in QGP

Quantum numbers of the charm-quark like excitations in QGP?

$$P_{C}^{Q=2/3} = \frac{1}{8} \left[54\chi_{13}^{QC} - 81\chi_{22}^{QC} + 27\chi_{31}^{QC} \right]$$
(1)
$$P_{C}^{B=1/3, Q=2/3} = \frac{27}{4} \left[\chi_{112}^{BQC} - \chi_{211}^{BQC} \right]$$
(2)

Charm-quark-like excitations in QGP



Clear agreement between three independent observables which correspond to the partial pressures of i) B=1/3, ii) Q=2/3, and iii) B=1/3 and Q=2/3 charm subsectors.

Conclusions & Outlook

- ▶ Deviations from HRG in the open-charm sector near $T_{pc} = 156.5 \pm 1.5$ MeV.
- ► Analysis shows that there are missing states in the PDG record.

Conclusions & Outlook

- ▶ Deviations from HRG in the open-charm sector near $T_{\rm pc} = 156.5 \pm 1.5$ MeV.
- Analysis shows that there are missing states in the PDG record.
- Quasi-particle model can describe the lattice results in the intermediate temperature range.
 - Presence of charm-quark-like excitations in QGP.
 - \bullet No evidence for the existence of charmed diquarks above $\mathrm{T}_{\mathrm{pc}}.$

Conclusions & Outlook

- ▶ Deviations from HRG in the open-charm sector near $T_{\rm pc} = 156.5 \pm 1.5$ MeV.
- Analysis shows that there are missing states in the PDG record.
- Quasi-particle model can describe the lattice results in the intermediate temperature range.
 - Presence of charm-quark-like excitations in QGP.
 - \bullet No evidence for the existence of charmed diquarks above $\mathrm{T}_{\mathrm{pc}}.$
- Continuum limit with two different LCPs is in progress; it will enable us to make a statement based on the absolute cumulants.

22 / 22