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D-wave Quantum Computer

The D-Wave quantum annealer consists of an array of metal loops with
Josephson junctions.
The two-state level system of each superconducting loop constitutes a
single qubit.
D-Wave’s quantum processing units (QPUs) are composed of qubits
placed in arrays and coupled in pairs.
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Annealing process
The array of qubits can be described as an form of Ising spin glass,

HQUBO = −
∑
i<j

Qijσ
i
zσ

j
z +

∑
i

Qiσ
i
z (1)

Q is a upper-triangle or a symmetric matrix.
By applying an external magnetic field, a non-commuting transverse field
σx is introduced at each site i.
The full Hamiltonian is expressed by the transverse field and the QUBO
Hamiltonian with time-dependent coefficients A(t) and B(t),

H(s) = −A(t)
∑

i

σi
x + B(t)HQUBO (2)

Starting from A/B ≫ 1 at t = 0, it reacheds A/B ≈ 0 after ‘anneal time’ tf .
We use two customized annealing profiles. The behavior of A(t) is
roughly inversely proportional to B(t).
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Strong Coupling Lattice QCD

(1) Speculated QCD phase diagram
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(2) Simulation at β = 0

Strong Coupling Lattice QCD is an effective theory of QCD at the zero
limit of inverse coupling β = 2Nc/g2 = 0.
SCQCD shares important features with QCD, confinement, chiral
symmetry breaking and restoration at the chiral transition temperature
and nuclear liquid gas transition.
It is extendable to finite inverse coupling β with gauge corrections.
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Strong Coupling Lattice QCD Dual representation

Partition function is

Z =

GC∑
{k,n,ℓ}

∏
b=(x,µ̂)

(Nc − kb)!

Nc!kb!
γ2kbδ0̂,µ̂

︸ ︷︷ ︸
meson hoppings

∏
x

Nc!

nx!
(2amq)

nx

︸ ︷︷ ︸
chiral condensate

∏
ℓ

w(ℓ, µ)︸ ︷︷ ︸
baryon hoppings

(3)

w(ℓ) =
1∏

x∈ℓ Nc!
σ(ℓ)γNcN0̂ exp (NcNtrℓatµ) (4)

kb : bond occupation number (0 ∼ Nc)
nx : site occupation number (0 ∼ Nc)
γ : anisotropy (a/at) (Changing temperature continuously)
amq : quark mass
σ(ℓ): sign factor (±1)
Grassmann Constraint(GC)

nx +
∑
±µ̂

(
kx,µ̂ +

N
2
|ℓx,µ̂|

)
= Nc (5)
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U(1) gauge theory (Nc = 1)

For the first, we choose the simplest gauge group U(1).
Partition function

Z =
∑
{conf}

e−S =

GC∑
{k,n,ℓ}

∏
b=(x,µ̂)

γ2kbδ0,µ̂
∏

x

(2amq)
nx (6)

S = −
∑

b=(x,µ̂)

2kbδ0,µ̂ log(γ)−
∑

x

nx log(2amq) (7)

kb ∈ {0, 1} and nx ∈ {0, 1}
k⃗T

b = (k1, k2, ..., kE), n⃗T
x = (n1, n2, ..., nV)

Property of binary number k2
i = ki, n2

i = ni

The action is written in diagonal weight matrix form with binary vector x.

S = xTWx = (⃗kT
b , n⃗

T
x )

(
−2δ0,µ̂ log(γ)1E×E 0V×E

0E×V − log(2amq)1V×V

)(
k⃗b

n⃗x

)
(8)
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U(1) on 2 × 2 Lattice

n1 n2

n3 n4

k1 k3

k5 k7

k2 k4

k6 k8

Grassmann constraint ∑
µ=±0,··· ,±d

kµ(x) + nx = 1, (9)

The matrix form of this constraint is:

A · x + b =


1 1 1 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 1 0 1 0 0
0 1 0 0 1 1 1 0 0 0 1 0
0 0 0 1 1 0 1 1 0 0 0 1





k1
k2
k3
k4
k5
k6
k7
k8
n1
n2
n3
n4



+


−1
−1
−1
−1

 = 0 (10)
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Constructing the QUBO matrix

Combining the action and Grassmann constraint.

χ2 = xTWx + p||Ax + b||2 (11)

p: penalty factor which controls the balance between action and
constraint.
The aim is to find the solution vector x which minimizes χ2.
The matrix formulation required by the D-wave API is

χ2 = xTQx + C (12)

The QUBO matrix Q and the constant C is

Q = W + p
(

ATA + diag(2bTA)
)
, C = pbTb (13)
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U(3) Theory
Partition function

Z =

GC∑
{k,n,ℓ}

∏
b=(x,µ̂)

(3 − kb)!

3!kb!
γ2kbδ0,µ̂

∏
x

3!
nx!

(2amq)
nx (14)

kb, nx ∈ {0, 1, 2, 3} and it can be expressed by combining two binary
numbers.

0 7→ (0, 0), 1 7→ (0, 1), 2 7→ (1, 0) 3 7→ (1, 1) (15)

S = xTWx = (⃗kT
b , n⃗

T
x )

(
(D2×2)1E×E 02V×2E

02E×2V (M2×2)1V×V

)(
k⃗b

n⃗x

)
(16)

D2×2 =

(
log(12)− 4δ0,µ̂ log(γ) 0

0 log(3)− 2δ0,µ̂ log(γ)

)
(17)

M2×2 =

(
−2 log(2amq) + log(2) log(3)

0 − log(2amq)

)
(18)

Grassmann constraint ∑
µ=±0,··· ,±d

kµ(x) + nx = 3, (19)

Jangho Kim (FZJ) SCLQCD on D-wave Lattice2023 9 / 19



Parameter tuning

One of the free parameters is the chain strength.
It controls the strength of chains used to build physical qubits into logical
qubits, ensuring that physical qubits act in unison.
Our problem is not the same topology as the QPU, so we can’t find a
one-to-one embedding, so non-trivial chain strength is required to retain
logical qubits.

`

−log (2amq)

−2log (γ)

−p

p

2 p

k2

n1 k1 n2 k3

k7

k 4

n4

k8k6

n3 k5

−2 p
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Optimal chain strength

Validity rate is the number of valid solution vectors which satisfy the
constraint over the total number of samples.
Validity rate is identical to the unbroken chain rate for small
chain strength.
Validity rate starts deviating from unbroken chain rate after some
specific value of chain strength.
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Penalty factor p

Penalty factor controls the balance between the action and constraint.

Q = W + p
(

ATA + diag(2bTA)
)

(20)

if p is small, finding valid solution will be hard.
group lattice configurations binary vectors percentage(%)

U(1) 2 × 2 17 212 0.4
U(1) 4 × 4 41025 248 1.5 × 10−8

U(1) 6 × 6 23079663560 2108 7 × 10−21

U(1) 2 × 2 × 2 689 232 0.00002
U(1) 2 × 2 × 2 × 2 1898625 280 1.6 × 10−16

U(2) 2 × 2 135 224 0.0008
U(3) 2 × 2 695 224 0.004
U(3) 2 × 2 × 2 8750060 264 4.7 × 10−11

If p is too big, the action part of QUBO matrix will be ignored.
Finding an optimized p is important.
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Distribution of valid configurations of U(1) theory
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(3) amq = 0.3, γ = 1
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(4) amq = 0.3, γ = 0.5

D-wave distribution is not exactly same with the ideal distribution.
D-wave find the important configurations more often. (Importance
sampling)
We can always compute e−S for given configuration.
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Observables

We measure two independent observables the number of monomers ⟨M⟩
and the number of temporal dimers ⟨Dt⟩.

M =
∑
x∈Ω

nx, Dt =
∑
x∈Ω

k0(x) (21)

They are related to chiral condensate and energy density.

ad−1⟨ψ̄ψ⟩ = ad−1 T
V
∂ log Z
∂mq

=
1
Ω

1
2amq

⟨M⟩ (22)

ad⟨ϵ⟩ = −ad

V
∂ log Z
∂T−1 =

1
Ω

(
ξ

γ

dγ
dξ

⟨2Dt⟩ − ⟨M⟩
)

=
1
Ω
(⟨Dt⟩ − ⟨M⟩)

Ω: spatial volume
γ: anisotropic
aT = ξ(γ)/Nt, ξ(γ) = κγ2 at strong coupling
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U(1) gauge group on 2 × 2
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The data points connected by dashed line are the D-wave raw data.
For large enough p, D-wave finds all 17 confs, and reweighting method
produces the correct distribution.
if p is very small, the action in the QUBO matrix is emphasized. Hence,
D-wave samples the distribution very near to the global minimum.
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The number of monomers (Chiral condensate)

⟨ψ̄ψ⟩ = 1
Ω

1
2mq

⟨M⟩ (23)

10 2 10 1

Wmax/Qmax

0.2

0.3

0.4

0.5

0.6

<
M

>

U(1), =4x4
amq = 0.3, = 0.5
amq = 0.6, = 0.5
amq = 0.3, = 1.0
amq = 0.6, = 1.0

10 3 10 2 10 1

Wmax/Qmax

0.1

0.2

0.3

0.4

0.5

<
M

>

U(1), =2x2x2
amq = 0.3, = 0.5
amq = 0.6, = 0.5
amq = 0.3, = 1.0
amq = 0.6, = 1.0

10 1 2 × 10 1 3 × 10 1 4 × 10 1

Wmax/Qmax

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

<
M

>

U(3), =2x2
amq = 0.5, = 0.5
amq = 1.0, = 0.5
amq = 0.5, = 1.0
amq = 1.0, = 1.0

In our choice of physical parameter, Qmax = 2p. So we use the ratio of
Wmax/Qmax for the tuning parameter.
Where Wmax/Qmax ≈ 0.01, reweighted results agree with the exact
solutions.
In the case of U(1) on 4 × 4 lattice, D-wave finds about (700 − 1800) valid
configurations in 41025 total which is 1.7 − 4.3%.
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The number of temporal dimers

⟨ϵ⟩ = 1
Ω
(⟨Dt⟩ − ⟨M⟩) (24)
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Another observable also shows good agreement with the analytic
solutions where Wmax/Qmax ≈ 0.01.
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Reweighting to other physical parameters
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U(1) on 2 × 2: Since we have 17 all confs, no restriction for reweighting
range.
U(1) on 4 × 4: 1.7 − 4.3% of valid confs, but 16 monomer conf is missing.
Reweighting does not describe well the large quark mass region.
U(1) on 2 × 2 × 2 and U(3) on 2 × 2: we have about 70% of valid confs.
reweighting works for a much longer range.
The errorbars are purely statistical.
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Conclusion

We have demonstrated that lattice gauge theory in the strong coupling
limit on D-wave quantum annealer.
As a proof of principle, U(1) and U(3) on various small volumes are
successfully simulated by the D-Wave quantum annealer.
In particular, we have demonstrated that importance sampling is feasible
on the quantum annealer.
The accuracy is greatly enhanced by the histogram reweighting method.
In that case, the tuning of D-Wave parameters is less crucial.
As introduce the static baryon, SU(Nc) gauge group can be simulated on
D-wave.
For larger volume, we propose an iterative scheme by decomposing local
updates on even and odd sites to deal with a more realistic. It need
hybrid classical/quantum computing.
We expect the quantum advantage over the worm algorithm by
comparing how fast D-wave can reach equilibrium and how shorter the
autocorrelation is on large volumes and low temperatures
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