Resolving the left-hand-cut problem in lattice studies of the doubly-charmed tetraquark

Steve Sharpe University of Washington

> Based on work in preparation with Zack Draper, Max Hansen, \& Fernando Romero-López

NATURE PHYSICS | VOL 18 | JULY 2022 | 751-754 | www.nature.com/naturephysics

Observation of an exotic narrow doubly charmed

 tetraquark
LHCb Collaboration ${ }^{\star}$

- $T_{c c} \rightarrow D^{0} D^{*+} \rightarrow D^{0} D^{0} \pi^{+}$
- $I=0, J^{P}=1^{+}$
- $M=3875 \mathrm{MeV}, \Gamma \approx 400 \mathrm{KeV}$
- Lies slightly below the $D D^{*}$ threshold
- $c c \bar{u} \bar{d} \Rightarrow$ Tetraquark, and thus exotic
- Strong candidate for $D D^{*}$ molecule

$T_{c c}(3875)$

NATURE PHYSICS | VOL 18 | JULY 2022 | 751-754 | www.nature.com/naturephysics
Observation of an exotic narrow doubly charmed tetraquark

LHCb Collaboration ${ }^{\star}$

- $T_{c c} \rightarrow D^{0} D^{*+} \rightarrow D^{0} D^{0} \rightarrow$ - LQCD
- $I=0$ or study using

Natural cand $875 \mathrm{MeV}, \Gamma \approx 400 \mathrm{KeV}$

- Lies slightly below the $D D^{*}$ threshold
- $c c \bar{u} \bar{d} \Rightarrow$ Tetraquark, and thus exotic
- Strong candidate for $D D^{*}$ molecule

Lattice studies of $T_{c c}(3875)$

- [Padmanath \& Prelovsec, 2202.101।0] $M_{\pi} \approx 280 \mathrm{MeV}$ (so D^{*} is stable) Lüscher method
- [Chen et al., 2206.06I85] $M_{\pi} \approx 350 \mathrm{MeV}\left(D^{*}\right.$ is stable) Lüscher method
- [Lyu et al. (HALQCD), 2302.04505] $M_{\pi} \approx 146 \mathrm{MeV}$ (D^{*} still stable!) Determine $D^{*} D$ potential using HALQCD method
- Active area of research!

Mon 31/07		
13:00		
	Tcc tetraquark and the continuum limit with clover fermions Curia II, WH2SW	Jeremy R. Green 13:30-13:50
	Doubly charm tetraquark using meson-meson and diquark-antidiquark interpolators	Emmanuel Ortiz Pacheco
14:00	Curia II, WH2SW	13:50-14:10
	Doubly charmed tetraquark \$T_\{cc\}^+\$ in (2+1)-flavor lattice QCD near physical point Curia II, WH2SW	$\begin{array}{r} \text { Sinya Aoki } \\ 14: 10-14: 30 \end{array}$
	Search for isoscalar axialvector \$bclbar ulbar d\$ tetraquark bound states Curia II, WH2SW	Dr M Padmanath 14:30-14:50

Left-hand cut in $D^{*} D$ amplitude

$$
\begin{gathered}
u=M_{\pi}^{2}, t=0 \\
s=s_{\mathrm{thr}}-\left(M_{\pi}^{2}-\left[M_{D^{*}}-M_{D}\right]^{2}\right)
\end{gathered}
$$

- Two-particle (Lüscher) quantization condition (QC2) fails at and below left-hand cut
- Nonanalyticity in \mathscr{M}_{2} and \mathscr{K}_{2} leads to additional finite-volume effects [Raposo \& Hansen, 23]
- $\mathscr{K}_{2} \propto 1 /(k \cot \delta)$ becomes complex, ERE fails
- In LQCD studies, left-hand cut lies in vicinity of putative virtual bound state, invalidating the analysis using QC2

Left-hand cut in $D^{*} D$ amplitude

- Ignoring LH cut suggests a virtual bound state
- Authors argue that this transitions to a real bound state for physical case
- Need to include pion exchange
- Example using model finds 0 or 2 virtual bound states
- See also talk by Md Habib E Islam
[Du et al., 2303.0944I]

Including LH cut in LQCD analyses

- Extend QC2 by explicit inclusion of LH cut [Raposo \& Hansen, talk by Raposo]
- Use HALQCD method to obtain $D^{*} D$ potential? [Lyu et al, talk by Aoki]
- Use three-particle quantization condition (QC3) applied to $D D \pi$ system [present proposal]
- D^{*} included as bound state in p -wave $D \pi$ channel (so don't need to use $\mathrm{QC2}$, or $\mathrm{QC} 2+3$ [Briceño, Hansen, SRS I7])
- Pion exchange automatically incorporated into formalism
- Applies also for physical case with unstable D^{*}
- Analogous to use of QC3 for three identical particles in which two form a dimer, and study dimerparticle interactions and trimer formation [Blanton et al., I 908.024 II; David et al., 2303.04394; talks by Md Habib E Islam \& Dawid]

Including LH cut in LQCD analyses

- Extend QC2 by explicit inclusion of LH cut [Raposo \& Hansen, talk by Raposo]
- Use HALQCD method to obtain $D^{*} D$ potential? [Lyu et al, talk by Aoki]
- Use three-particle quantization condition (QC3) applied to $D D \pi$ system [present proposal]
- D^{*} included as bound state in p -wave $D \pi$ channel (so don't need to use QC 2 , or $\mathrm{QC} 2+3$ [Briceño, Hansen, SRS I7])
- Pion exchange automatically incorporated into formalism
- Applies also for physical case with unstable D^{*}
- Analogous to use of QC3 for three identical particles in which two form a dimer, and study dimerparticle interactions and trimer formation [Blanton et al., I 908.024 II; David et al., 2303.04394; talks by Md Habib E Islam \& Dawid]

Here we present only the formalism; applications are for future work

Essential idea

- In TOPT, LH cut arises from intermediate $D D \pi$ state, which is not included in standard analysis

- 3 particle $D D \pi$ formalism does include such a state, and D^{*} included as $D \pi$ bound state

Workflow of QC3

Special to this application:

Generalization required

- We work in isosymmetric QCD
- Focus on charge 1 states: $D^{0} D^{0} \pi^{+}, D^{+} D^{+} \pi^{-}, D^{+} D^{0} \pi^{0}$, all of which mix
- Need a combination of " $2+1$ " and fully nonidentical QC3s [Blanton \& SRS]
* 2+1 QC3 has two flavor channels (two choices of spectator)
* Fully nonidentical QC3 has three flavor channels
- Thus might expect that full QC3 requires $2+2+3=7$ channels
- In fact, our preferred approach has 8 channels, corresponding to symmetric ($I=1$) and antisymmetric ($I=0$) combinations of $D^{+} D^{0}$ in $D^{+} D^{0} \pi^{0}$ state
- Block diagonalizes into different total isospins: $\frac{1}{2} \otimes \frac{1}{2} \otimes 1=0 \oplus 1 \oplus 1 \oplus 2$
- $I=0$ (case of interest for $T_{c c}$), and $I=2$, have 2-d flavor structure
- $I=1$ has 4-d flavor structure

Methods of derivation

- Use both TOPT-based method of [Blanton \& SRS] and intuitive method based on nontrivial generalization of derivation for 3π of all allowed isospins [Hansen, Romero-López, SRS]
- Former leads to both asymmetric and symmetric forms of QC3, latter only to symmetric form

Results: QC3

- Symmetric form of QC3 takes the by-now familiar form

$$
\begin{gathered}
\prod_{I \in\{0,1,2\}} \operatorname{det}_{i, \ell, m}\left[1+\widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]} \widehat{F}_{3}^{[I]}\right]=0 \\
\widehat{F}_{3}^{[]]} \equiv \frac{\widehat{F}^{[I]}}{3}-\widehat{F}^{[I]} \frac{1}{1+\widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{G}^{[]]}} \widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{F}^{[I]}, \quad \widehat{\mathcal{M}}_{2, L}^{[]]} \equiv \frac{1}{\widehat{\mathcal{K}}_{2, L}^{[I]-1}+\widehat{F}^{[I]}}
\end{gathered}
$$

- Focus here on most relevant case: $I=0$
- 2-d flavor structure corresponding to $\left[(D \pi)_{I=1 / 2} D\right]_{I=0}$ and $\left[(D D)_{I=1} \pi\right]_{I=0}$

$$
\widehat{G}^{[l=0]}=\left(\begin{array}{cc}
G^{D D} & \sqrt{2} P_{\ell} G^{D \pi} \\
\sqrt{2} G^{\pi D} P_{\ell} & 0
\end{array}\right)
$$

Results: QC3

- Symmetric form of QC3 takes the by-now familiar form

$$
\begin{gathered}
\prod_{I \in\{0,1,2\}} \operatorname{det}_{i, \ell, m}\left[1+\widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]} \widehat{F}_{3}^{[I]}\right]=0 \\
\widehat{F}_{3}^{[I]} \equiv \frac{\widehat{F}^{[I]}}{3}-\widehat{F}^{[I]} \frac{1}{1+\widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{G}^{[]]}} \widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{F}^{[I]}, \quad \widehat{\mathcal{M}}_{2, L}^{[l]} \equiv \frac{1}{\widehat{\mathcal{K}}_{2, L}^{[I]-1}+\widehat{F}^{[I]}}
\end{gathered}
$$

- Focus here on most relevant case: $I=0$
- 2-d flavor structure corresponding to $\left[(D \pi)_{I=1 / 2} D\right]_{I=0}$ and $\left[(D D)_{I=1} \pi\right]_{I=0}$

$$
\widehat{F}^{[I=0]}=\operatorname{diag}\left(\widetilde{F}^{D}, \widetilde{F}^{\pi}\right) \quad \widehat{G}^{[I=0]}=\left(\begin{array}{cc}
G^{D D} & \sqrt{2} P_{\ell} G^{D \pi} \\
\sqrt{2} G^{\pi D} P_{\ell} & 0
\end{array}\right)
$$

Results: QC3

- Symmetric form of QC3 takes the by-now familiar form

$$
\begin{gathered}
\prod_{I \in\{0,1,2\}} \operatorname{det}_{i, \ell, m}\left[1+\widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]} \widehat{F}_{3}^{[I]}\right]=0 \\
\widehat{F}_{3}^{[I]} \equiv \frac{\widehat{F}^{[I]}}{3}-\widehat{F}^{[I]} \frac{1}{1+\widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{G}^{[]]}} \widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{F}^{[I]}, \quad \widehat{\mathcal{M}}_{2, L}^{[I]} \equiv \frac{1}{\widehat{\mathcal{K}}_{2, L}^{[I]-1}+\widehat{F}^{[I]}}
\end{gathered}
$$

- Focus here on most relevant case: $I=0$
- 2-d flavor structure corresponding to $\left[(D \pi)_{I=1 / 2} D\right]_{I=0}$ and $\left[(D D)_{I=1} \pi\right]_{I=0}$

$$
\widehat{\mathcal{K}}_{2, L}^{[I=0]}=\operatorname{diag}\left(\overline{\mathcal{K}}_{2, L}^{D \pi, I=1 / 2}, \frac{1}{2} \overline{\mathcal{K}}_{2, L}^{D D, I=1}\right) \quad \widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I=2,0]}=\left(\begin{array}{c}
{\left[\mathcal{K}_{\mathrm{dff}}^{[I=2,3]}\right]_{D D}} \\
\frac{1}{\sqrt{2}}\left[\mathcal{K}_{\mathrm{df}, 3}^{[I=2,0]}\right]_{\pi D} \\
\frac{1}{\sqrt{2}}\left[\mathcal{K}_{\mathrm{df}}^{[I=3,3]}\right]_{2} \\
\frac{1}{2}\left[\mathcal{K}_{\mathrm{df}, 3}^{[I=2,0]}\right]_{\pi \pi}
\end{array}\right)
$$

Results: Integral equations

- Obtained by taking infinite-volume limit of a "finite-volume scattering amplitude"

$$
\widehat{\mathcal{M}}_{3}^{[I]}=\lim _{\epsilon \rightarrow 0^{+}} \lim _{L \rightarrow \infty} \widehat{\mathcal{M}}_{3, L}^{[I]} \quad \widehat{\mathcal{M}}_{3, L}^{[I=0,2]}=\left\langle\alpha_{\mathcal{S}}\right| \widehat{\mathcal{M}}_{3, L}^{(u, u),[I=0,2]}\left|\alpha_{\mathcal{S}}\right\rangle \quad\left|\alpha_{\mathcal{S}}\right\rangle=\binom{2}{\sqrt{2}}
$$

The unsymmetrized finite-volume amplitude is

$$
\widehat{\mathcal{M}}_{3, L}^{(u, u),[I]}=\widehat{\mathcal{D}}_{L}^{(u, u),[I]}+\widehat{\mathcal{M}}_{\mathrm{df}, 3, L}^{(u, u),[I]},
$$

and it is composed by the ladder amplitude, which contains pairwise rescattering,

$$
\widehat{\mathcal{D}}_{L}^{(u, u),[I]}=-\widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{G}^{[I]} \widehat{\mathcal{M}}_{2, L}^{[I]} \frac{1}{1+\widehat{G}^{[I]} \widehat{\mathcal{M}}_{2, L}^{[I]}},
$$

and a short-distance piece that depends on the three-particle K matrix.

$$
\widehat{\mathcal{M}}_{\mathrm{df}, 3, L}^{(u, u),[I]}=\left[\frac{1}{3}-\widehat{\mathcal{D}}_{23, L}^{(u, u),[I]} \widehat{F}^{[I]}\right] \widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]} \frac{1}{1+\widehat{F}_{3}^{[I]} \widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]}}\left[\frac{1}{3}-\widehat{F}^{[I]} \widehat{\mathcal{D}}_{23, L}^{(u, u),[I]}\right],
$$

where

$$
\widehat{\mathcal{D}}_{23, L}^{(u, u),[I]}=\widehat{\mathcal{M}}_{2, L}^{[I]}+\widehat{\mathcal{D}}_{L}^{(u, u),[I]} .
$$

Implementation for $I=0$

- QC3 for $[D D \pi]_{I=0}$ is essentially the same as for $K^{+} K^{+} \pi^{+}$, which has been implemented
- Input needed is spectrum of $(D \pi)_{I=1 / 2}$ (including D^{*} if stable), $(D D)_{I=1}, \&[D D \pi]_{I=0}$ (including $D^{*} D$ if D^{*} is stable) states
- Minimal choice for \mathscr{K}_{2} is s - and p -waves in $(D \pi)_{I=1 / 2}$ and s -wave in $(D D)_{I=1}$
- Use effective-range expansion for \mathscr{K}_{2} up to terms linear in q^{2}
* Choice for p -wave $(D \pi)_{I=1 / 2}$ interaction must lead to bound-state pole in $\mathscr{M}_{2}(D \pi, I=1 / 2)^{(\ell=1)}$ at the position found in LQCD simulations
- Projections onto lattice irreps can be carried over from $K^{+} K^{+} \pi^{+}$
- Form to use for $\mathscr{K}_{\mathrm{df}, 3}^{[I=0]}$ is unclear; may require a pole in the $J^{P}=1^{+}$channel, in which case a form consistent with the symmetries is

$$
\mathcal{K}_{\mathrm{d}, 3}^{[I=0]} \supset \mathcal{K}_{T_{c c}} \frac{1}{P^{2}-M_{T_{c c}}^{2}}\left(p_{1}+p_{2}\right)^{\mu}\left(k_{1}+k_{2}\right)^{\nu}\left(g_{\mu \nu}-\frac{P_{\nu} P_{\mu}}{P^{2}}\right)
$$

- Integral equations are a multichannel generalization of previous work, and also involve a projection onto overall $J^{P}=1^{+}$
- Under study in collaboration with Sebastian Dawid

Summary \& Outlook

- Three-particle formalism generalized to $D D \pi$ for $I=0,1,2$
- Allows study of $I=1 T_{c c}(3875)$ including the physics of the LH cut
- Valid for both physical and heavier-than-physical light-quark masses
- Analysis of LQCD results more complicated than applying two-particle (Lüscher) quantization condition
- Requires I-, 2- and 3-particle spectra if D^{*} is stable
- To extract $D^{*} D$ amplitude need to solve multichannel integral equations
- Same formalism applies to $B B \pi$ tetraquarks [Bicudo et al., I505.006I3; Francis et al., 1607.052I4; Hudspith \& Mohler, 2303. I7295;Aoki et al., 2306.03565], and to $K K \pi$ systems of general isospin

Thanks Any questions?

References

RFT 3-particle papers

Max Hansen \& SRS:

"Relativistic, model-independent, three-particle quantization condition,"
arXiv:1408.5933 (PRD) [HS14]
"Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude," arXiv:1504.04028 (PRD) [HS15]
"Perturbative results for 2-\& 3-particle threshold energies in finite volume," arXiv: 1509.07929 (PRD) [HSPT15]
"Threshold expansion of the 3-particle quantization condition,"
arXiv:1602.00324 (PRD) [HSTH15]
"Applying the relativistic quantization condition to a 3-particle bound state in a periodic box," arXiv: 1609.04317 (PRD) [HSBS16]
"Lattice QCD and three-particle decays of Resonances," arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]

Raúl Briceño, Max Hansen \& SRS:

"Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles," arXiv:1701.07465 (PRD) [BHS17]
"Numerical study of the relativistic three-body quantization condition in the isotropic approximation,"
arXiv:1803.04169 (PRD) [BHS18]
"Three-particle systems with resonant sub-processes in a finite volume," arXiv:1810.01429 (PRD 19) [BHS19]

SRS

"Testing the threshold expansion for three-particle energies at fourth order in φ^{4} theory," arXiv:1707.04279 (PRD) [SPT17]

Tyler Blanton, Fernando Romero-López \& SRS:

"Implementing the three-particle quantization condition including higher partial waves," arXiv:1901.07095 (JHEP) [BRS19] "I=3 three-pion scattering amplitude from lattice QCD," arXiv:1909.02973 (PRL) [BRS-PRL19]
"Implementing the three-particle quantization condition

$$
\text { for } \pi^{+} \pi^{+} K^{+} \text {and related systems" } 2111.12734 \text { (JHEP) }
$$

$19 / 15$

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:
"Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states", arXiv:1908.02411 (JHEP) [BBHRS19]

Raúl Briceño, Max Hansen, SRS \& Adam Szczepaniak:
"Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism," arXiv:1905.11188 (PRD)

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V.
Mathieu, M. Mikhasenko, A. Pilloni, SRS \& A. Szczepaniak:
"On the Equivalence of Three-Particle Scattering Formalisms," arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

"Generalizing the relativistic quantization condition to include all three-pion isospin channels", arXiv:2003.10974 (JHEP) [HRS20]
"Decay amplitudes to three particles from finite-volume matrix elements," arXiv: 2101.10246 (JHEP)

Tyler Blanton \& SRS:

"Alternative derivation of the relativistic three-particle quantization condition," arXiv:2007.16188 (PRD) [BS20a]
"Equivalence of relativistic three-particle quantization conditions,"
arXiv:2007.16190 (PRD) [BS20b]

"Relativistic three-particle quantization condition for nondegenerate scalars," arXiv:2011.05520 (PRD)
"Three-particle finite-volume formalism for $\pi^{+} \pi^{+} K^{+} \&$ related systems," arXiv:2105.12904 (PRD)
Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López \& SRS
" $3 \pi^{+} \& 3 K^{+}$interactions beyond leading order from lattice QCD," arXiv:2106.05590 (JHEP)
Zack Draper, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López \& SRS
"Interactions of $\pi K, \pi \pi K$ and $K K \pi$ systems at maximal isospin from lattice QCD," arXiv:2302.13587

"Three relativistic neutrons in a finite volume," arXiv:2303.10219

Jorge Baeza-Ballesteros, Johan Bijnens, Tomas Husek, Fernando Romero-López, SRS \&
Mattias Sjö: "The isospin-3 three-particle K-matrix at NLO in ChPT," arXiv:2303.13206

Other work

* Implementing RFT integral equations

- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3 \pi^{+}$spectrum and using to determine three-particle scattering amplitude]
- A. Jackura et al., 2010.09820, PRD [Solving s-wave RFT integral equations in presence of bound states]
- S. Dawid, Md. Islam and R. Briceño, 2303.04394 [Analytic continuation of 3-particle amplitues]

Reviews

- A. Rusetsky, 1911.01253 [LATTICE 2019 plenary]
- M. Mai, M. Döring and A. Rusetsky, 2103.00577 [Review of formalisms and chiral extrapolations]
- F. Romero-López, 2112.05170, [Three-particle scattering amplitudes from lattice QCD]
\star Other numerical simulations
- F. Romero-López, A. Rusetsky, C. Urbach, 1806.02367, JHEP [2- \& 3-body interactions in φ^{4} theory]
- M. Fischer et al., 2008.03035, Eur.Phys.J.C $\left[2 \pi^{+} \& 3 \pi^{+}\right.$at physical masses $]$
- M. Garofolo et al., 2211.05605, JHEP [3-body resonances in φ^{4} theory]

Other work

\star NREFT approach

- H.-W. Hammer, J.-Y. Pang \& A. Rusetsky, 1706.07700, JHEP \& 1707.02176, JHEP [Formalism \& examples]
- M. Döring et al., 1802.03362, PRD [Numerical implementation]
- J.-Y. Pang et al., 1902.01111, PRD [large volume expansion for excited levels]

- F. Romero-López, A. Rusetsky, N. Schlage \& C. Urbach, 2010.11715, JHEP [generalized large-volume exps]
- F. Müller \& A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]
- J-Y. Pang, M. Ebert, H-W. Hammer, F. Müller, A. Rusetsky, $\underline{2204.04807, ~ J H E P, ~[S p u r i o u s ~ p o l e s ~ i n ~ a ~ f i n i t e ~ v o l u m e] ~}$
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2110.09351, JHEP [Relativistic-invariant formulation of the NREFT threeparticle quantization condition]
- J. Lozano, U. Meißner, F. Romero-López, A. Rusetsky \& G. Schierholz, $\underline{2205.11316 \text {, JHEP [Resonance form factors }}$ from finite-volume correlation functions with the external field method]
- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2211.10126, JHEP [3-particle Lellouch-Lüscher formalism in moving frames
- R. Bubna, F. Müller, A. Rusetsky, 2304.13635 [Finite-volume energy shift of the three-nucleon ground state]

Alternate 3-particle approaches

\star Finite-volume unitarity (FVU) approach

- M. Mai \& M. Döring, 1709.08222, EPJA [formalism]
- M. Mai et al., 1706.06118 , EPJA [unitary parametrization of M_{3} involving R matrix; used in FVU approach]
- A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]
- M. Mai \& M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., 1909.05749 ,PRD [applying FVU approach to $3 \pi^{+}$spectrum from Hanlon \& Hörz]
- C. Culver et al., 1911.09047, PRD [calculating $3 \pi^{+}$spectrum and comparing with FVU predictions]
- A. Alexandru et al., 2009.12358, PRD [calculating $3 K^{-}$spectrum and comparing with FVU predictions]
- R. Brett et al., $\underline{2101.06144, ~ P R D}$ [determining $3 \pi^{+}$interaction from LQCD spectrum]
- M. Mai et al., 2107.03973, PRL [three-body dynamics of the a_{1} (1260) from LQCD]
- D. Dasadivan et al., 2112.03355 , PRD [pole position of $a_{1}(1260)$ in a unitary framework]

\star HALQCD approach

- T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

Backup slides

Forms of F and G

- Symmetric form of QC3 takes the by-now familiar form

$$
\begin{gathered}
\prod_{I \in\{0,1,2\}} \operatorname{det}_{i, \boldsymbol{k}, \ell, m}\left[1+\widehat{\mathcal{K}}_{\mathrm{df}, 3}^{[I]} \widehat{F}_{3}^{[I]}\right]=0 \\
\widehat{F}_{3}^{[I]} \equiv \frac{\widehat{F}^{[I]}}{3}-\widehat{F}^{[I]} \frac{1}{1+\widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{G}^{[I]}} \widehat{\mathcal{M}}_{2, L}^{[I]} \widehat{F}^{[I]}, \quad \widehat{\mathcal{M}}_{2, L}^{[I]} \equiv \frac{1}{\widehat{\mathcal{K}}_{2, L}^{[I]-1}+\widehat{F}^{[I]}} \\
\widehat{F}^{[I=0]}=\operatorname{diag}\left(\widetilde{F}^{D}, \widetilde{F}^{\pi}\right) \quad \widehat{G}^{[I=0]}=\left(\begin{array}{c}
G^{D D} \quad \sqrt{2} P_{\ell} G^{D \pi} \\
\sqrt{2} G^{\pi D} P_{\ell} \\
0
\end{array}\right) \\
{\left[\widetilde{F}^{(i)}\right]_{p^{\prime} \ell^{\prime} m^{\prime} ; p \ell m}=\delta_{\boldsymbol{p}^{\prime} \boldsymbol{p}} \frac{H^{(i)}(\boldsymbol{p})}{2 \omega_{p}^{(i)} L^{3}}\left[\frac{1}{L^{3}} \sum_{a}^{\mathrm{UV}}-\mathrm{PV} \int^{\mathrm{UV}} \frac{d^{3} a}{(2 \pi)^{3}}\right]\left[\frac{\mathcal{Y}_{\ell^{\prime} m^{\prime}}\left(\boldsymbol{a}^{*(i, j, j)}\right)}{\left(q_{2, p^{\prime}}^{*(i)}\right)^{\ell^{\prime}}} \frac{1}{4 \omega_{a}^{(j)} \omega_{b}^{(k)}\left(E-\omega_{p}^{(i)}-\omega_{a}^{(j)}-\omega_{b}^{(k)}\right)} \frac{\mathcal{Y}_{\ell m}\left(\boldsymbol{a}^{*(i, j, p)}\right)}{\left(q_{2, p}^{*(i)}\right)^{\ell}}\right]} \\
{\left[\widetilde{G}^{(i j)}\right]_{p^{\prime} m^{\prime} ; r \ell m}=\frac{1}{2 \omega_{p}^{(i)} L^{3}} \frac{\mathcal{Y}_{\ell^{\prime} m^{\prime}}}{\left.\left(q_{2, p}^{*(i)}\right)^{*(i, j, p)}\right)} \frac{H^{(i)}(\boldsymbol{p}) H^{(j)}(\boldsymbol{r})}{b_{i j}^{2}-m_{k}^{2}} \frac{\mathcal{Y}_{\ell m}\left(\boldsymbol{p}^{*(j, i, r)}\right)}{\left(q_{2, r}^{*(j)}\right)^{\ell}} \frac{1}{2 \omega_{r}^{(j)} L^{3}},}
\end{gathered}
$$

where $b_{i j}=\left(E-\omega_{p}^{(i)}-\omega_{r}^{(j)}, \boldsymbol{P}-\boldsymbol{p}-\boldsymbol{r}\right)$.

