Decimation map in 2D for accelerating HMC

LATTICE 2023
Fermilab, 07.31.2023

Based on collaboration with
P. Boyle, R. Brower, T. Izubuchi, L. Jin, C. Jung, A. Tomiya in preparation

Introduction $(1 / 2)$

Goal Overcome critical slowing down \& topological freezing and perform efficient simulations on fine lattices.

- Partial solution may be open boundary condition

Lüscher-Schaefer 11
But many statistical techniques assume translational invariance thus we want to keep the periodic boundary if possible.

Introduction (2/2)

Short timeline

- Proposal of trivializing map Lüscher 09
(Name borrowed from Nicolai 80)
- LO approximation w/CP P^{N-1}

Engel-Schaefer 11
"The reduction in the forces, ..., is compensated by the computational overhead"

- Wilson flow and its generalizations [4D SU(3) pure gauge] Jin LATTICE 2021 poster Boyle-Izubuchi-Jin-Jung-NM-Lehner-Tomiya LATTICE2022 [2212.11387]

Tunneling rate can increase, but still overwhelmed by overhead. \Rightarrow Step back and reconsider strategy using 2D U(1)

- Significant developments in normalizing flow/generative models
- Develop a variant of trivializing map: "decimation map"

Trivialization decomposed into several stages.
Each stage corresponds to integrating out local DOF

- Apply to 2D $U(1)$ pure gauge with the guided MC (a generalization of HMC)

Horowitz 91
$\tau_{\text {int }}(Q)$ in MC unit

$\tau_{\text {int }}(Q)$ in wall-clock time

- Algorithm is exact, scalings known and controlled.

Decimation map (1/2)

- Trivialization w/ several stages

- K_{t} can be ontained from solving the linear equation: $\mathcal{L}_{t} K_{t}=-S^{(\mathrm{loc})} . \quad\left(\mathcal{L}_{t} \equiv-\partial^{2}-t \partial S^{(\mathrm{loc})} \cdot \partial\right)$ We directly solve this with CGNE; only once as pre-calculation.
- Dividing the system into \mathcal{T} and \mathcal{R},

- This map leaves the physics in large units exactly unchanged.
\therefore can be regarded as a coarse-graining map

Updates in coarse-grained lattice.

- Acceleration expected because of
- Increase of the trivialized region
- Coarser action for the large-unit variables

$2 \mathrm{D} U(1)(1 / 1)$

Wilson action

$$
S(U) \equiv-\beta \sum_{x} \cos \kappa_{x}
$$

$$
\left(\begin{array}{ll}
\kappa_{x} \equiv \frac{1}{i} \log \left(U_{x, 0} U_{x+0,1} U_{x+1,0}^{\dagger} U_{x, 1}^{\dagger}\right) & : \text { plaquette angle } \\
\beta=\frac{1}{(a g)^{2}} & -\pi \leq \kappa_{x}<\pi
\end{array}\right)
$$

Solvable system, exact formulas from Fourier expansion.

Characteristic features

- Topological charge: $Q=\frac{-1}{2 \pi} \sum_{x} \kappa_{x} \in \mathbb{Z} \quad$ Simplest lattice gauge field theory with topology
- correlation length zero (ultralocal)
deal with topological freezing rather than entire critical slowing down.
- topological susceptibility: $\quad \chi_{Q} \sim \frac{g^{2}}{(2 \pi)^{2}} . \quad \therefore$ typical instanton size $\sim(2 \pi)^{2} / g^{2}$.

Update algorithm (1/1)

Guided-Hamiltonian Monte Carlo (a variant of HMC):

Horowitz 91
Duane et al. 87

- Replace the action in H by an approximate effective action (calculated in CG).
- Detailed balance still holds : Liouville theorem and reversibility

Pros

- Simplifies the calculation of force
- Transparent separation of UV/IR

Cons

- Acceptance rate needs to be controlled additionally by the flow step size $\epsilon: \delta H \propto \epsilon^{n}$

$$
\text { (} n=2 \text { below })
$$

- no gauge fixing
- periodic boundary
- Flow equation solved with the midpoint integrator (: net discretization error $=O\left(\epsilon^{2}\right)$ as mentioned)
- Bijective ensured by keeping ϵ in a bound. cf. Lüscher 09

Cost scaling towards the continuum limit $(1 / 1)$

Physical volume fixed to $6 \times 6 / g^{2}$, ϵ scaled to keep acceptance rate ~ 0.9
~typical instanton size
$\tau_{\text {int }}(Q)$ in MC unit

Execution time/conf (no parallelization)

$\tau_{\text {int }}(Q)$ in wall-clock time

Kernel shapes @ $\beta=8.89(1 / 1)$

- $\quad 2^{\text {nd }}$ stage is the most expensive simply because \exists many terms.
- From $1 / \beta$ expansion of the kernel, suppression of large winding is seemingly power-law.

Analyzing the tunneling $(1 / 1)$

NM+ in prep

- By switching on/off the inner/outer updates alternatively, we investigate how tunneling is induced.

$2^{\text {nd }}$ stage

3 rd stage

$4^{\text {th }}$ stage

tunneling rate

- At the large β regime, the ratio of the tunneling rates (in MC units) can be understood from the probability:

$$
P\left(\frac{\pi^{2}}{2}>S_{\mathrm{eff}}^{(\mathrm{loc})}(\pi)-S_{\mathrm{eff}}^{(\mathrm{loc})}(0)\right), \pi \sim \mathcal{N}(0,1)
$$

From fit
1: 0.886(52)
2: 0.493(40)
3: 0.235(14)
4: 0.067(42)

From prob
1: 0.856
2: 0.507
3: 0.242
4: 0.101

Aiming for large β, it seems more effective to get with field transformations a coarse-grained theory than enlarging completely trivialized regions.

Towards QCD (1/1)

Including fermion

- We can expect exponential speed-up to remain when using exact $S_{\text {eff }}$ in HMC (sometimes referred to as "FT-HMC") see Lüscher 09
especially when fermion is present because of its additional cost.
cf. Engel-Schaefer 11, P.Boyle Plenary Tue
- However, effect of this peculiar smearing on fermion is nontrivial.
see also J. Finkenrath Mon

Higher-dimension

- trivializing map for codimension one surfaces \rightarrow theory of 1×2 Wilson loops \because gauge invariance
2D Wilson is special that links on a line are independent; much larger function space required for higher dimensions.
- Another possibility: freeze links surrounding local volume \& trivialize interior. \rightarrow "cage action", which can lower potential barriers for the remaining links. :

Non-Abelian groups

- We can work in the Wilson loop space to construct the function basis; labels may again be the winding numbers (though we need to take into account the noncommutativity and traces).
- Though there are Mandelstam constraints, use of overcomplete basis seems possible when using CG.

Summary (1/1)

- We considered decimation map that can be regarded as a coarse-graining transformation.

$\tau_{\text {int }}(Q)$ in MC unit
$\tau_{\text {int }}(Q)$ in wall-clock time (no parallelization)

- It is true that the current investigation uses special features of 2 D and $U(1)$; however, we believe that having a method that works on this simplest model and has possible generalization directions will be a good starting point for developing algorithms for QCD.

Thank you.

