

Running Dark Energy in Lattice Quantum Gravity

Mingwei Dai (speaker)
Jack Laiho, Judah Unmuth-Yockey, Marc Schiffer

Syracuse University
mdai07@syr.edu

Aug 1st, 2023

Asymtotic Safety with EDT

It was pointed out by Weinberg that if gravity is asymptotically safe, it would be renormalizable non-perturbatively.[1]

Euclidean dynamical triangulations (EDT) is an approach to lattice quantum gravity. Geometry is constructed by gluing 4 -simplices together. In [J. Laiho, S. Bassler,2016], it was shown that when a non-trivial measure term is added and associated coupling is fine-tuned, EDT gives the correct Hausdorff dimension and spectral dimension.

Figure 1: Visualization of one configuration. Dots represent 4 -simplices and the lines show connection between the nearest neighbors.

Euclidean Dynamical Triangulations

The path integral of 4-d Euclidean Einstein gravity in the continuum is:

$$
\begin{equation*}
Z_{E}=\int \mathcal{D}[g] e^{-S_{E H}[g]} \tag{1}
\end{equation*}
$$

For lattice QG , the path integral becomes:

$$
\begin{equation*}
Z_{E}=\sum_{T} \frac{1}{C_{T}}\left[\Pi_{j=1}^{N_{2}} \mathcal{O}\left(t_{j}\right)^{\beta}\right] e^{-S_{E R}} \tag{2}
\end{equation*}
$$

where C_{T} divides out equivalant ways of labeling the vertices in a given geometry, N_{2} is the total number of triangles in our geometry, β is a free parameter, and $S_{E R}$ is the Einstein-Regge action:[J. Ambjorn,J. Jurkiewicz,1992]

$$
\begin{equation*}
S_{E R}=-\kappa_{2} N_{2}+\kappa_{4} N_{4}, \tag{3}
\end{equation*}
$$

The volume of a d-simplex can be calculated:

$$
\begin{equation*}
V_{d}=\frac{\sqrt{d+1}}{d!\sqrt{2^{d}}} a^{d} . \tag{4}
\end{equation*}
$$

Phase Diagram

Figure 2: Schematic of the phase diagram as a function of κ_{2} and β.[D. Coumbe, J. Laiho,2014]

Lattice spacings I

Two units of lattice spacing:

- Link units a : Distance between two vertices. Edge/link length.
- Simplex units ℓ : Distance between two 4 -simplexes.

Quantities can be measured in both units and on different lattice spacings.
Therefore, to put quantities in a common unit, we need the value of $\frac{a}{\ell}$ and $\ell_{\text {rel }}$, which is the relative dual lattice spacing:

$$
\ell_{\text {rel }}=\frac{\ell}{\ell_{\text {fiducial }}}
$$

Determination of $\frac{a}{\ell} \mathrm{I}$

The shelling function of a particular configuration can be found by choosing a source simplex and find its neighbors and neighbors of neighbors.

Figure 3: Shelling of one configuration. x axis shows the geodesic distance (Euclidean time) and y axis shows the number of 4 -simplices in that slice (3 -volumes).

Determination of $\frac{a}{\ell}$ II

We fit our shelling to the function:

$$
\begin{equation*}
f(\tau)=A \cos ^{3}(B \tau+C) \tag{5}
\end{equation*}
$$

The scale factor in Euclidean space should have the form of:

$$
\begin{equation*}
A(\tau)=\sqrt{\frac{3}{\Lambda}} \cos \left(\sqrt{\frac{\Lambda}{3}} \tau\right) \tag{6}
\end{equation*}
$$

Figure 4: Finer lattices are closer to the de Sitter solution.

Determination of $\frac{a}{\ell}$ III

$A^{1 / 3}$ should just be $1 / B$ if the space and time units are consistent.

$$
\begin{equation*}
\frac{1}{A^{1 / 3} B}=\frac{\ell_{V}}{\ell} \tag{7}
\end{equation*}
$$

which is the ratio between the unit length in the 3 -volume and the Euclidean time. And $\frac{a}{\ell}$ can be obtained by:

$$
\begin{equation*}
\frac{a}{\ell}=\left(\frac{2 \pi^{2}}{\frac{\sqrt{5}}{96}}\left(\frac{\ell_{V}}{\ell}\right)^{3}\right)^{\frac{1}{4}} \tag{8}
\end{equation*}
$$

Figure 6: Extrapolation of $\frac{a}{\ell}$ on for ensembles with $\kappa_{2}=3.4 . \frac{a}{\ell}=16.586(680)$ with $\chi^{2} /$ d.o.f. $=0.698$.

Determination of $\ell_{\text {rel }}$ and Absolute Lattice Spacing

Relative lattice spacing

$$
\begin{equation*}
\ell_{\mathrm{rel}}=\frac{m_{k}}{m_{\mathrm{fid}}} \tag{9}
\end{equation*}
$$

where m_{k} is the renormalized mass at which it turns for a particular lattice spacing and $m_{\text {fid }}$ is the mass of the fiducial lattice spacing.

Figure 7: Knee of three $\kappa_{2}=3.0$ ensembles.

Determination of absolute lattice spacing can be done by calculating G on the lattice.[S. Bassler,M. Schiffer,J. Laiho,2021][M. Dai,M. Schiffer,J. Laiho,2021][Marc Schiffer, today at 2:30 WH3NW]

Running dark energy

We can extract the scale factor $A(\tau)$ from the 3 -volume using the formula:

$$
\begin{equation*}
A(\tau)=\left(\frac{1}{2 \pi^{2}} \frac{\sqrt{5}}{96} V_{3}(\tau)\left(\frac{a}{\ell}\right)^{4}\right)^{\frac{1}{3}} \tag{10}
\end{equation*}
$$

From the first Friedmann equation in the Euclidean space, we have

$$
\begin{equation*}
\Lambda=\frac{3}{A^{2}}\left[-\left(\frac{\mathrm{d} A}{\mathrm{~d} \tau}\right)^{2}+1\right] \tag{11}
\end{equation*}
$$

Figure 8: The fit of Λ as a function of H^{2} for 32 k $\kappa_{2}=3.8$

We fit our Λ to a running dark energy model introduced by Joan Solà:[arXiv:1501.03832]

$$
\begin{equation*}
\Lambda=\Lambda_{0}+3 \nu H^{2}+3 \tilde{\nu} \dot{H}+\mathcal{O}\left(H^{4}\right) \tag{12}
\end{equation*}
$$

where H is the Hubble parameter. ν and $\tilde{\nu}$ are dimensionless parameters.

Running of ν and $\tilde{\nu} \mathrm{I}$

If we define $s=\frac{\ddot{A}}{A}$ so that $\dot{H}=s-H^{2}$ then we can rewrite:

$$
\begin{equation*}
\Lambda=\Lambda_{0}+3 \tilde{\nu} s+3 \nu^{\prime} H^{2} \tag{13}
\end{equation*}
$$

where $\nu^{\prime}=\nu-\tilde{\nu}$. And we treat s as a constant.

Figure 9: s as a function of H^{2} for $32 \mathrm{k} \kappa_{2}=3.8$

Figure 10: The fit of Λ as a function of H^{2} for 32 k $\kappa_{2}=3.8$

Running of ν and $\tilde{\nu}$ II

Figure 11: $\nu^{\prime}=\nu-\tilde{\nu}$ for different lattice spacings and volumes with a logarithmic fit. We get
$[A, B]=[0.284(109), 0.005(1)]$ with $\chi^{2} /$ d.o.f. $=0.153$.
ν is dimensionless.

$$
\begin{align*}
& \nu\left(\mu_{f}^{2}\right)=\frac{\nu\left(\mu_{i}^{2}\right)}{1+b \log \left(\frac{\mu_{f}^{2}}{\mu_{i}^{2}}\right)} \tag{14}\\
& \mu^{2} \rightarrow H^{2} \propto R \propto 1 / \sqrt{V_{4}} \\
& \nu^{\prime}=\frac{A}{\log \left(B \sqrt{V_{4}}\right)} \tag{15}
\end{align*}
$$

Running of ν and $\tilde{\nu}$ III

We did separate fits for 3 lattice spacings.

$$
\begin{gathered}
I_{H^{2}}=\Lambda_{0}+3 \tilde{\nu} s \\
I_{H^{2}}=\frac{C}{\sqrt{V_{4}}}+\frac{3 \tilde{A} s}{\log \left(B \sqrt{V_{4}}\right)}
\end{gathered}
$$

Figure 12: $\tilde{\nu}$ for different lattice spacings.
The fit result of $\tilde{\nu}$ is roughly consistent with $0 . \kappa_{2}=3.8$ ensembles give $\tilde{\nu}=-0.038(51)$ with $\chi^{2} /$ d.o.f. $=2.370 . \kappa_{2}=3.4$ ensembles give $\tilde{\nu}=-0.050(45)$ with $\chi^{2} /$ d.o.f. $=0.026$.

- $\nu^{\prime}=\nu-\tilde{\nu}$ is from 1st Friedmann equation
- Classically, $s=\frac{\ddot{A}}{A}=-\frac{\Lambda}{3}$. It receives a correction when Λ starts running. - $\nu^{\prime \prime}=\nu-2 \tilde{\nu}$ from the 2 nd Friedmann equation and continuity equation

$$
\begin{equation*}
I_{H^{2}}+3 s \approx-3 \nu^{\prime \prime} s \tag{16}
\end{equation*}
$$

[Jack Laiho, today 4:40, WH3NE]

$\nu^{\prime \prime}$ II

When $\tilde{\nu}$ is 0 , both ν^{\prime} and $\nu^{\prime \prime}$ reduce to ν.

Figure 13: $\nu^{\prime}=\nu-\tilde{\nu}$ for different lattice spacings and volumes with a logarithmic fit. We get $[A, B]=[0.284(109), 0.005(1)]$ with $\chi^{2} /$ d.o.f. $=0.153$.

Figure 14: $\nu^{\prime \prime}=\nu-2 \tilde{\nu}$ for different lattice spacings and volumes with a logarithmic fit. We get $[A, B]=[0.291(111), 0.005(1)]$ with $\chi^{2} /$ d.o.f. $=0.099$.

We can see that ν^{\prime} and $\nu^{\prime \prime}$ are pretty consistent, which means that $\tilde{\nu}$ is 0 . This is in agreement with the calculation of renormalized ρ_{Λ} with QFT on FLRW spacetime[C. Moreno-Pulido,2023].

Conclusion

- Our results show that the dark energy runs naturally in lattice quantum gravity and can be well described by the Solà model.
- The running of Λ only depends on H^{2}.
- What particles does dark energy decay to?
- How does adding matter field affect the result?

References

目
S．Weinberg，＂ULTRAVIOLET DIVERGENCES IN QUANTUM THEORIES OF GRAVITATION，＂in General Relativity：An Einstein Centenary Survey（1980）pp．790－831
宣
D．Coumbe and J．Laiho，JHEP 04， 028 （2015）doi：10．1007／JHEP04（2015）028 ［arXiv：1401．3299［hep－th］］．

J．Laiho，S．Bassler，D．Coumbe，D．Du and J．T．Neelakanta，Phys．Rev．D 96，no．6， 064015 （2017）［arXiv：1604．02745［hep－th］］．

J．Ambjorn and J．Jurkiewicz，Phys．Lett．B278，42（1992）．
J．Solà and A．Gómez－Valent，Int．J．Mod．Phys．D 24， 1541003 （2015）
doi：10．1142／S0218271815410035［arXiv：1501．03832［gr－qc］］．
M．Dai，J．Laiho，M．Schiffer and J．Unmuth－Yockey，Phys．Rev．D 103，no．11， 114511 （2021） doi：10．1103／PhysRevD．103．114511［arXiv：2102．04492［hep－lat］］．
詹
S．Bassler，J．Laiho，M．Schiffer and J．Unmuth－Yockey，Phys．Rev．D 103， 114504 （2021） doi：10．1103／PhysRevD．103．114504［arXiv：2103．06973［hep－lat］］．
国
C．Moreno－Pulido，J．Sola Peracaula and S．Cheraghchi，Eur．Phys．J．C 83，no．7， 637 （2023） doi：10．1140／epjc／s10052－023－11772－9［arXiv：2301．05205［gr－qc］］．

Thank you!

