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Asymtotic Safety with EDT

It was pointed out by Weinberg that if gravity is
asymptotically safe, it would be renormalizable
non-perturbatively.[1]

Euclidean dynamical triangulations (EDT) is an
approach to lattice quantum gravity. Geometry is
constructed by gluing 4-simplices together. In
[J. Laiho, S. Bassler,2016], it was shown that when
a non-trivial measure term is added and associated
coupling is fine-tuned, EDT gives the correct
Hausdorff dimension and spectral dimension.

Figure 1: Visualization of one
configuration. Dots represent
4-simplices and the lines show
connection between the nearest
neighbors.
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Euclidean Dynamical Triangulations

The path integral of 4-d Euclidean Einstein gravity in the continuum is:

ZE =

∫
D[g]e−SEH[g], (1)

For lattice QG, the path integral becomes:

ZE=
∑

T
1

CT

[∏N2
j=1 O(tj)

β
]
e−SER (2)

where CT divides out equivalant ways of labeling the vertices in a given geometry, N2
is the total number of triangles in our geometry, β is a free parameter, and SER is the
Einstein-Regge action:[J. Ambjorn,J. Jurkiewicz,1992]

SER = −κ2N2+κ4N4, (3)

The volume of a d-simplex can be calculated:

Vd=
√

d+1
d!
√

2d
ad. (4)
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Phase Diagram

β

Branched
Polymer
Phase

Collapsed
Phase

κ
2

B

A

D

C

Crinkled
 Region

Figure 2: Schematic of the phase diagram as a function of κ2 and
β.[D. Coumbe, J. Laiho,2014]
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Lattice spacings I

Two units of lattice spacing:
Link units a: Distance between two vertices. Edge/link length.
Simplex units ℓ: Distance between two 4-simplexes.

Quantities can be measured in both units and on different lattice spacings.
Therefore, to put quantities in a common unit, we need the value of a

ℓ
and ℓrel, which

is the relative dual lattice spacing:

ℓrel =
ℓ

ℓfiducial
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Determination of a
ℓ I

The shelling function of a particular configuration can be found by choosing a source
simplex and find its neighbors and neighbors of neighbors.

Figure 3: Shelling of one configuration. x axis shows the geodesic distance (Euclidean time) and y axis
shows the number of 4-simplices in that slice (3-volumes).
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Determination of a
ℓ II

We fit our shelling to the function:

f (τ) = A cos3 (Bτ + C) (5)

The scale factor in Euclidean space should have the form of:

A (τ) =

√
3
Λ

cos(

√
Λ

3 τ) (6)

0 2 4 6 8 10 12 14
rescaled geodesic distance

0.00

0.05

0.10

0.15

0.20

0.25

re
sc

al
ed

 n
um

be
r o

f 4
-s

im
pl

ice
s

2 = 0.5886, = 1.5
2 = 1.75665, = 0
2 = 2.45, = 0.520
2 = 3.0, = 0.746
2 = 3.8, = 0.88
2 = 4.1, = 0.930

de Sitter

Figure 4: Finer lattices are closer to the de Sitter
solution.

Figure 5: The fit of shelling to f(τ) on 8k fine.
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Determination of a
ℓ III

A1/3 should just be 1/B if the space and
time units are consistent.

1
A1/3B =

ℓV

ℓ
(7)

which is the ratio between the unit length
in the 3-volume and the Euclidean time.
And a

ℓ
can be obtained by:

a
ℓ
=

(
2π2
√

5
96

(
ℓV

ℓ

)3
) 1

4

(8)
Figure 6: Extrapolation of a

ℓ
on for ensembles with

κ2 = 3.4. a
ℓ

= 16.586(680) with χ2/d.o.f. = 0.698.
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Determination of ℓrel and Absolute Lattice Spacing

Relative lattice spacing

ℓrel =
mk

mfid
(9)

where mk is the renormalized mass at which it
turns for a particular lattice spacing and mfid is
the mass of the fiducial lattice spacing.

Figure 7: Knee of three κ2 = 3.0
ensembles.

Determination of absolute lattice spacing can be done by calculating G on the
lattice.[S. Bassler,M. Schiffer,J. Laiho,2021][M. Dai,M. Schiffer,J. Laiho,2021][Marc
Schiffer, today at 2:30 WH3NW]
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Running dark energy

We can extract the scale factor A(τ) from
the 3-volume using the formula:

A(τ) =

(
1

2π2

√
5

96 V3(τ)
(a
ℓ

)4
) 1

3

(10)

From the first Friedmann equation in the
Euclidean space, we have

Λ =
3

A2

[
−
(

dA
dτ

)2
+ 1
]

(11)

Figure 8: The fit of Λ as a function of H2 for 32k
κ2 = 3.8

We fit our Λ to a running dark energy model introduced by Joan
Solà:[arXiv:1501.03832]

Λ = Λ0 + 3νH2 + 3ν̃Ḣ +O
(

H4
)

(12)

where H is the Hubble parameter. ν and ν̃ are dimensionless parameters.
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Running of ν and ν̃ I

If we define s = Ä
A so that Ḣ = s − H2 then we can rewrite:

Λ = Λ0 + 3ν̃s + 3ν′H2 (13)

where ν′ = ν − ν̃. And we treat s as a constant.

Figure 9: s as a function of H2 for 32k κ2 = 3.8
Figure 10: The fit of Λ as a function of H2 for 32k
κ2 = 3.8
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Running of ν and ν̃ II

Figure 11: ν′ = ν − ν̃ for different lattice spacings and
volumes with a logarithmic fit. We get
[A, B] = [0.284(109), 0.005(1)] with χ2/d.o.f. = 0.153.

ν is dimensionless.

ν(µ2
f ) =

ν(µ2
i )

1 + b log(
µ2

f
µ2

i
)

(14)

µ2 → H2 ∝ R ∝ 1/
√

V4

ν′ =
A

log(B
√

V4)
(15)
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Running of ν and ν̃ III

We did separate fits for 3 lattice spacings.

Figure 12: ν̃ for different lattice spacings.

IH2 = Λ0 + 3ν̃s

IH2 =
C√
V4

+
3Ãs

log
(
B
√

V4
)

The fit result of ν̃ is roughly consistent with 0. κ2 = 3.8 ensembles give
ν̃ = −0.038(51) with χ2/d.o.f. = 2.370. κ2 = 3.4 ensembles give ν̃ = −0.050(45) with
χ2/d.o.f. = 0.026.

Mingwei Dai (SU) Aug 1st, 2023 13 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ν ′′ I

ν′ = ν − ν̃ is from 1st Friedmann equation
Classically, s = Ä

A = −Λ
3 . It receives a correction when Λ starts running.

ν′′ = ν − 2ν̃ from the 2nd Friedmann equation and continuity equation

IH2 + 3s ≈ −3ν′′s (16)

[Jack Laiho, today 4:40, WH3NE]
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ν ′′ II

When ν̃ is 0, both ν′ and ν′′ reduce to ν.

Figure 13: ν′ = ν − ν̃ for different lattice spacings
and volumes with a logarithmic fit. We get
[A, B] = [0.284(109), 0.005(1)] with χ2/d.o.f. = 0.153.

Figure 14: ν′′ = ν − 2ν̃ for different lattice spacings
and volumes with a logarithmic fit. We get
[A, B] = [0.291(111), 0.005(1)] with χ2/d.o.f. = 0.099.

We can see that ν′ and ν′′ are pretty consistent, which means that ν̃ is 0. This is in
agreement with the calculation of renormalized ρΛ with QFT on FLRW
spacetime[C. Moreno-Pulido,2023].
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Conclusion

Our results show that the dark energy runs naturally in lattice quantum gravity
and can be well described by the Solà model.
The running of Λ only depends on H2.
What particles does dark energy decay to?
How does adding matter field affect the result?
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Thank you!
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