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Asymtotic Safety with EDT

It was pointed out by Weinberg that if gravity is
asymptotically safe, it would be renormalizable
non-perturbatively.[1]

Euclidean dynamical triangulations (EDT) is an
approach to lattice quantum gravity. Geometry is
constructed by gluing 4-simplices together. In

[J. Laiho, S. Bassler,2016], it was shown that when
a non-trivial measure term is added and associated
coupling is fine-tuned, EDT gives the correct
Hausdorff dimension and spectral dimension.
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Figure 1: Visualization of one
configuration. Dots represent
4-simplices and the lines show
connection between the nearest
neighbors.
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Euclidean Dynamical Triangulations

The path integral of 4-d Euclidean Einstein gravity in the continuum is:

Zs= [ Dlge 1, )

For lattice QG, the path integral becomes:

Zg=>1p %T [H]{Vﬁl O(tj)B] e 9BR (2)

where Cr divides out equivalant ways of labeling the vertices in a given geometry, No
is the total number of triangles in our geometry, 3 is a free parameter, and Sgr is the
Einstein-Regge action:[J. Ambjorn,J. Jurkiewicz,1992]

Spr = —kaNa+raNy, (3)
The volume of a d-simplex can be calculated:

Va= YL ot (4)
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Diagram
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Figure 2: Schematic of the phase diagram as a function of ko and
B.[D. Coumbe, J. Laiho,2014]




Lattice spacings I

Two units of lattice spacing:
o Link units a: Distance between two vertices. Edge/link length.
o Simplex units £: Distance between two 4-simplexes.

Quantities can be measured in both units and on different lattice spacings.
Therefore, to put quantities in a common unit, we need the value of § and £ye1, which
is the relative dual lattice spacing:
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Determination of %

The shelling function of a particular configuration can be found by choosing a source
simplex and find its neighbors and neighbors of neighbors.
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Figurc 3: Shelling of one configuration. z axis shows the geodesic distance (Euclidean time) and y axis
shows the number of 4-simplices in that slice (3-volumes).




Determination of % II

We fit our shelling to the function:
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rescaled number of 4-simplices

0.00

f(r)=A4 cos® (Br+ C) (5)

The scale factor in Euclidean space should have the form of:

A(r) = \/% cos(\/gT) (6)

Figure 4: Finer lattices are closer to the de Sitter
solution.
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Determination of % IIT

A'/3 should just be 1/B if the space and
time units are consistent.

1 Ly

ATBB T 0 @

which is the ratio between the unit length

in the 3-volume and the Euclidean time.
And 7 can be obtained by:
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Figure 6: Extrapolation of ¢ on for ensembles with

rky =3.4. ¢ = 16.586(680) with x2/d.o.f. = 0.698.




Determination of /., and Absolute Lattice Spacing
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Figure 7: Knee of three kg = 3.0
ensembles.
Determination of absolute lattice spacing can be done by calculating G on the
lattice.[S. Bassler,M. Schiffer,J. Laiho,2021][M. Dai,M. Schiffer,J. Laiho,2021][Marc
Schiffer, today at 2:30 WH3NW]
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Running dark energy

32ksf/B-0.88 intercept = 0.001270, slope = 0.313373

We can extract the scale factor A(7) from
the 3-volume using the formula: +++

V5 4 3 | ++
1 5 a 0.0018

Am) = (272% v () ) (10) +++++
From the first Friedmann equation in the - ++ t
Euclidean space, we have 0.0014 ] M+++

A:X’Q[— <((];;_1>2+1 (11)

We fit our A to a running dark energy model introduced by Joan
Sola:[arXiv:1501.03832]
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Figure 8: The fit of A as a function of H? for 32k
ko = 3.8

A= Ao+ 3vH +30H+0O (H“) (12)

where H is the Hubble parameter. v and 7 are dimensionless parameters.
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Running of v and v I

i

If we define s = 4 so that H=s— H? then we can rewrite:

A= Ao+ 30s+ 3 H (13)

where v/ = v — . And we treat s as a constant.
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Figure 9: s as a function of H? for 32k ko = 3.8

32ksf/B-0.88 intercept = 0.001270, slope = 0.313373
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Figure 10: The fit of A as a function of H? for 32k
Ko = 3.8




Running of v and v II
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Figure 11: v/ = v — & for different lattice spacings and
volumes with a logarithmic fit. We get
[4, B] = [0.284(109), 0.005(1)] with x?/d.o.f. = 0.153.




Running of v and v III

We did separate fits for 3 lattice spacings.

w fine
o124 ¥ superfine
¥ ratherfine
0.010
No.oosf IHQ = Ao + 3175
<
o006 | C 3A s
I 02 = —+
0.004 VvV V4 IOg (B\/ V4)
0.002 ._*_.\_.\
300 400 500 600 700 800 900 1000
sqrt(N4)

Figure 12: & for different lattice spacings.

The fit result of 7 is roughly consistent with 0. k2 = 3.8 ensembles give

7 = —0.038(51) with x?/d.o.f. = 2.370. k2 = 3.4 ensembles give 7 = —0.050(45) with
x?/d.o.f. = 0.026.
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o V' =v — ¥ is from 1st Friedmann equation
o Classically, s = % = —%. It receives a correction when A starts running.

o V' = v — 20 from the 2nd Friedmann equation and continuity equation
Ipp +3s~ —3V"s (16)

[Jack Laiho, today 4:40, WH3NE]
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V" 11

When 7 is 0, both ' and v’ reduce to v.
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Figure 13: v/ = v — ¥ for different lattice spacings Figure 14: v = v — 20 for different lattice spacings
and volumes with a logarithmic fit. We get and volumes with a logarithmic fit. We get
[A, B] = [0.284(109), 0.005(1)] with x2/d.o.f. = 0.153. [A, B] = [0.291(111), 0.005(1)] with x2/d.o.f. = 0.099.

We can see that v’ and " are pretty consistent, which means that & is 0. This is in
agreement with the calculation of renormalized pp with QFT on FLRW
spacetime[C. Moreno-Pulido,2023].




Conclusion

Our results show that the dark energy runs naturally in lattice quantum gravity
and can be well described by the Sola model.

o The running of A only depends on H2.
What particles does dark energy decay to?
How does adding matter field affect the result?
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