Prospect for the stout smearing as an equivalent approach to the Wilson flow

M. Nagatsuka, K. Sakai, S. Sasaki Tohoku University

M. N, K. Sakai, S. Sasaki, arXiv:2303.09938 [hep-lat]

Motivation

- Spatial stout smearing and spatial gradient flow almost shows same behavior in 2pt fuctions of glueballs.
 K. Sakai, S. Sasaki, PRD107, 034510 (2022)
- Same feature was previously observed using plaquette values.
 S. D. Thomas et al., PRD92, 094515 (2015)
- We want to know the parameter dependence of difference between two method.

Yang-Mills Gradient flow

M. Lüscher JHEP 08 (2010) 071

A time evolution equation toward 5th direction t (flow time)

$$\frac{\partial B_{\mu}}{\partial t}(x,t) = D_{\nu}G_{\nu\mu}(x,t)$$

$$A_{\mu}(x) = A_{\mu}(x)$$

 $B_{\mu}(x,t)|_{t=0} = A_{\mu}(x)$: Initial condition

Correlation functions made of $B_{\mu}(x, t)$ are always UV finite

without the wave function renormalization.

M. Lüscher, P. Weisz, JHEP 02 (2011) 051

Gradient flow is regarded as 4+1 dimension field theory in continuous space time.

 \rightarrow one can use perturbation theory.

Wilson flow (Yang-Mills Gradient flow)

M. Lüscher JHEP 08 (2010) 071

A time evolution equation toward 5th direction t (flow time)

$$\frac{\partial V_{\mu}}{\partial t}(x,t)V_{\mu}^{-1}(x,t) = -g_0^2 \partial_{x,\mu} S_W(V_{\mu}(x,t))$$

 $V_{\mu}(x,t)|_{t=0} = U_{\mu}(x)$

: Initial condition

Correlation functions made of $V_{\mu}(x, t)$ are always UV finite without the wave function renormalization.

M. Lüscher, P. Weisz, JHEP 02 (2011) 051

Applications

TT 7

- Construction of Energy Momentum tensor on the lattice
 H. Suzuki, PTEP 2013, 083B03 (2013)
- Non-perturbative Renormalization
 A. Ramos, JHEP 11, 101 (2014)

Stout-link smearing

C.Morningstar, M. Peardon (2004)

$$U_{\mu}^{(n+1)}(x) = e^{i\rho Q_{\mu}^{(n)}(x)} U_{\mu}^{(n)}(x)$$

It is used to reduce a statistical error in numerical simulations. $U_{\mu}^{(n)}(x) \in SU(3)$ is always true.

$$\begin{split} & C_{\mu}(x) = \sum_{\nu \neq \mu} \left(U_{\nu}(x)U_{\mu}(x+\hat{\nu})U_{\nu}^{\dagger}(x+\hat{\mu}) + U_{\nu}^{\dagger}(x-\hat{\nu})U_{\mu}(x-\hat{\nu})U_{\nu}(x-\hat{\nu}+\hat{\mu}) \right) \\ & \Omega_{\mu}(x) = C_{\mu}(x)U_{\mu}^{\dagger}(x) \\ & Q_{\mu}(x) = \frac{i}{2} \left(\Omega_{\mu}^{\dagger}(x) - \Omega_{\mu}(x) \right) - \frac{i}{6} \mathrm{Tr} \left(\Omega_{\mu}^{\dagger}(x) - \Omega_{\mu}(x) \right) & \begin{array}{c} (\mathrm{Traceless} \\ \mathrm{Hermitian \ matrix} \end{array} \end{split}$$

Equivalence of two methods

$$\frac{\text{Step 1.}}{U_{\mu}^{(n+1)}(x)} = e^{i\rho Q_{\mu}^{(n)}(x)} U_{\mu}^{(n)}(x) \\ U_{\mu}(x,t+\rho) = U_{\mu}(x,t) + i\rho Q_{\mu}(x,t) U_{\mu}(x,t) + \frac{1}{2} \left(i\rho Q_{\mu}(x,t)\right)^{2} U_{\mu}(x,t) + \cdots \\ \frac{\rho \to 0}{\longrightarrow} \quad \frac{\partial U_{\mu}(x,t)}{\partial t} = i Q_{\mu}^{(n)}(x) U_{\mu}(x,t) \\ \frac{\beta \to 0}{2} \quad g_{0}^{2} \partial_{x,\mu} S_{W} = -i Q_{\mu}(x,t) \\ \int M_{N, K. Sakai, S. Sasaki, arXiv:2303.09938 [hep-lather definition of the second seco$$

- Stout-link smearing = Wilson flow at $\rho \rightarrow 0$ (independent of *a*).
- LO correction $O(\rho)$ induce the $O(a^2)$ correction.

	-			
	$\beta = 6/g_0^2$	$L^3 \times T$	$a \; [{ m fm}]$	
acing a.	5.76	$16^3 \times 32$	0.1486(7)	
	5.96	$24^3 \times 48$	0.1000(5)	
	6.17	$32^3 \times 64$	0.0708(3)	
	6.42	$48^3 \times 96$	0.0500(2)	

- Comparison of the energy density $\langle E(t) \rangle$ (flow time) = $\rho \times$ (smearing step) : analytical relation These are scaled by a^2 .
- We smear the gauge configurations with $\rho = 0.1, 0.025, 0.01$ for each couplings (12 combinations of ρ and a).
- Wilson flow is calculated using 4th order Runge-Kutta method with $\epsilon = 0.025$ (fixed, independent of choice).

Setups

Simulation at four lattice spacing a.
 100 statistics for each a.

Behavior of $X(t) = t^2 \langle E(t) \rangle_{t \text{ (flow time)}}$

• X(t) is dimensionless.

M. Lüscher JHEP **08** (2010) 071

- The gray line and the yellow band is the perturbative result.
- Similar behavior in two methods.

Evaluation of the difference

$$R(t) = \frac{X_{\text{stout}}(t) - X_{\text{flow}}(t)}{X_{\text{flow}}(t)}$$

The gray band is noise/signal ratio of $X_{\text{flow}}(t)$: $\Delta X_{\text{flow}}/X_{\text{flow}}$ $R(t) \rightarrow 0 \text{ as } \rho, a \rightarrow 0.$

(We scale *t* with $t_{0.3}$ satisfying $X|_{t=t_{0.3}} = 0.3$)

a dependence of $R(t = t_{0.3})$

Evaluation of
$$R(t = t_{0.3})$$
 $\left(t_{0.3} \text{ satisfies } t^2 \langle E \rangle \right|_{t=t_{0.3}} = 0.3$

dashed line : $\Delta X_{\text{flow}}/X_{\text{flow}}$

a dependence of $R(t = t_{0.3})$

Evaluation of
$$R(t = t_{0.3})/\rho$$
 $\left(t_{0.3} \text{ satisfies } t^2 \langle E \rangle \right|_{t=t_{0.3}} = 0.3$

Summary and future works

- The Wilson flow and the stout-link smearing is equivalent at $\rho \rightarrow 0.$
- We can regard the two methods are same within some numerical precision if we choose proper combinations.

- Calculation with Stout-link smearing is a factor of O(10) faster than Wilson flow \rightarrow efficient simulations
- Perturbation theory in the gradient flow formalism can be use for the calculation of one loop quantities in lattice perturbation theory for smeared-link fermion action.

Backup

Energy density $\langle E \rangle$

M. Lüscher JHEP **08** (2010) 071

$$= \frac{1}{4} (V_{\mu}(x,t)V_{\nu}(x+\hat{\mu},t)^{\dagger}V_{\mu}(x+\hat{\nu},t)V_{\nu}^{\dagger}(x,t) + V_{\nu}^{\dagger}(x-\hat{\nu},t)V_{\mu}(x-\hat{\nu},t)V_{\nu}(x+\hat{\mu}-\hat{\nu},t)V_{\mu}^{\dagger}(x,t) + V_{\mu}^{\dagger}(x-\hat{\mu},t)V_{\nu}^{\dagger}(x-\hat{\mu}-\hat{\nu},t)V_{\mu}(x-\hat{\mu}-\hat{\nu},t)V_{\nu}(x-\hat{\nu},t) + V_{\nu}^{\dagger}(x,t)V_{\mu}(x-\hat{\mu}+\hat{\nu},t)V_{\nu}(x-\hat{\mu},t)V_{\mu}^{\dagger}(x-\hat{\mu},t))_{AH}$$

$$E = \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} \quad : \text{Energy density}$$

Gauge conf.

TABLE I. Summary of the gauge ensembles: gauge coupling, lattice size $(L^3 \times T)$, plaquette value, lattice spacing (a), spatial extent (La), the Sommer scale (r_0), the number of the gauge field configurations (N_{conf}), the number of thermalization sweeps (n_{therm}) and the number of update sweeps (n_{update}). All lattice spacings are set by the Sommer scale ($r_0 = 0.5$ fm) [20, 21].

$\beta=6/g_0^2$	$L^3 \times T$	plaquette	$a~[{ m fm}]$	$La \; [{ m fm}]$	r_0/a (Ref. [21])	$N_{ m conf}$	$n_{ m therm}$	$n_{ m update}$
5.76	$16^3 imes 32$	0.560938(9)	0.1486(7)	2.38	3.364(17)	100	5000	200
5.96	$24^3 \times 48$	0.589159(3)	0.1000(5)	2.40	5.002(25)	100	2000	200
6.17	$32^3 \times 64$	0.610867(1)	0.0708(3)	2.27	7.061(35)	100	2000	200
6.42	$48^3 \times 96$	0.632217(1)	0.0500(2)	2.40	10.00(5)	100	2000	200

t_0, w_0

	t_0/a	v^2 (stout-link smear	t_0/a^2 (Wilson flow)	
β	ho=0.1	ho=0.025	ho=0.01	$\epsilon = 0.025$
5.76	1.2502(30)	1.2690(30)	1.2722(31)	1.2741(31)
5.96	2.7744(62)	2.7919(62)	2.7949(62)	2.7968(62)
6.17	5.476(13)	5.494(13)	5.497(13)	5.499(13)
6.42	11.218(22)	11.236(23)	11.240(23)	11.242(23)

TABLE III. Results of t_0/a^2 obtained from the stout smearing with three smearing parameters $\rho = 0.1, 0.025, 0.01$ and the Wilson flow ($\epsilon = 0.025$).

TABLE IV. Results of w_0/a obtained from the stout-link smearing with three smearing parameters $\rho = 0.1, 0.025, 0.01$ and the Wilson flow ($\epsilon = 0.025$).

	w_0/a (stout-link smearing)			w_0/a (Wilson flow)	
eta	ho=0.1	ho=0.025	ho=0.01	$\epsilon = 0.025$	
5.76	1.1098(18)	1.1199(18)	1.1220(18)	1.1224(18)	
5.96	1.6755(24)	1.6819(24)	1.6832(24)	1.6833(24)	
6.17	2.3684(41)	2.3729(41)	2.3738(41)	2.3738(41)	
6.42	3.4042(48)	3.4075(48)	3.4081(48)	3.4081(48)	

Computational speed

Computational time for 100 step(single core、 2.5GHz)

TABLE I. Run on a single core of Intel Xeon E5-2609 CPUs at 2.5GHz.					
directions	stout-link smearing $(\rho=0.025)$	Wilson flow ($\epsilon = 0.025$)			
		2nd-order RK	3rd-order RK	4th-order RK	
space-time	$136.80 \; [sec]$	$985.55 \ [sec]$	$1496.51 \ [sec]$	$2061.08 \ [sec]$	
space	90.39 [sec]	$511.84 \; [sec]$	763.51 [sec]	1074.07 [sec]	