SymEFT predictions for local fermion bilinears

Nikolai Husung

LATTICE 2023

Fermilab, 3 August 2023

Motivation: Continuum extrapolation

In an asymptotically free theory, like QCD, leading lattice artifacts are of the form (up to factors of $\log \bar{g}(1/a)$)

$$\begin{split} \frac{\mathcal{P}(a)}{\mathcal{P}(0)} &= 1 + a^{n_{\min}} \sum_{i} \left[\overline{g}^{2}(1/a) \right]^{\widehat{\Gamma}_{i}} c_{i} \\ &+ \mathcal{O}(a^{n_{\min}+1}, a^{n_{\min}} \overline{g}^{2\widehat{\Gamma}_{i}+2}(1/a), \ldots) \end{split}$$

 $\hat{\Gamma}_i$ can be negative and distinctly nonzero \Rightarrow impact on convergence.

Motivation: Continuum extrapolation

In an asymptotically free theory, like QCD, leading lattice artifacts are of the form (up to factors of $\log \bar{g}(1/a)$)

$$\begin{split} \frac{\mathcal{P}(a)}{\mathcal{P}(0)} &= 1 + a^{n_{\min}} \sum_{i} \left[\overline{g}^{2}(1/a) \right]^{\widehat{\Gamma}_{i}} c_{i} \\ &+ \mathcal{O}(a^{n_{\min}+1}, a^{n_{\min}} \overline{g}^{2\widehat{\Gamma}_{i}+2}(1/a), \ldots) \end{split}$$

 $\hat{\Gamma}_i$ can be negative and distinctly nonzero \Rightarrow impact on convergence.

Warning example: 2d O(3) non-linear sigma model $\min \hat{\Gamma}_i = -3$ [Balog et al., 2009, 2010]

 \Rightarrow Compute $\hat{\Gamma}_i$ in QCD to gain better control over continuum extrapolation.

Spectral quantities get corrections from the lattice action

$$\Delta S = {\color{blue}a^{n_{\min}}} \int \mathrm{d}^4 x \sum_i \bar{\omega}_i(g_0) \mathcal{O}_i(x) + \dots$$

Spectral quantities get corrections from the lattice action

$$\Delta S = {\color{blue}a^{n_{\min}}} \int \mathrm{d}^4 x \sum_i ar{\omega}_i(g_0) \mathcal{O}_i(x) + \ldots$$

Example: hadron masses

$$am^X(a) = \lim_{t \to \infty} \log \frac{C_{2pt}^X(t)}{C_{2pt}^X(t+a)}$$

$$\frac{m^{X}(a)}{m^{Y}(a)} = \frac{m^{X}}{m^{Y}} \left\{ 1 - \frac{a^{n_{\min}}}{m^{X}} \sum_{i} \hat{c}_{i} [2b_{0}\bar{g}^{2}(1/a)]^{\hat{\Gamma}_{i}^{\mathcal{B}}} \left(\frac{m_{i;\text{RGI}}^{X}}{m^{X}} - \frac{m_{i;\text{RGI}}^{Y}}{m^{Y}} \right) + \dots \right\}$$

where $\hat{\Gamma}_i^{\mathcal{B}} = (\gamma_0^{\mathcal{B}})_i/(2b_0) + n_i^{\mathsf{I}}$ can be obtained from 1-loop running of the operators \mathcal{O}_i

$$\mu \frac{\mathrm{d}\mathcal{O}_{i;\overline{\mathsf{MS}}}(\mu)}{\mathrm{d}\mu} = -(\gamma_0^{\mathcal{O}})_{ik}\bar{g}^2(\mu)\mathcal{O}_{k;\overline{\mathsf{MS}}}(\mu)$$

and a change of basis $\mathcal{O} \to \mathcal{B}$ s.t. $\gamma_0^{\mathcal{B}}$ is diagonal.

Leading powers $\hat{\Gamma}_i^{\mathcal{B}}$ for pure gauge, Wilson and GW quarks [NH et al., 2020, 2022; NH, 2023] ²

Local fields are more complicated with two contributions

Discretised local field:
$$\Delta J(x) = \frac{a^{n_{\min}}}{\sum_{i}} \bar{\nu}_{i}(g_{0}) J_{i}(x) + \dots$$

Lattice action:
$$\Delta S = {\color{red} a^{n_{\min}}} \int \mathrm{d}^4 x \sum_i \bar{\omega}_i(g_0) Q_i(x) + \dots, \quad Q = \mathcal{O} \cup \mathcal{E}$$

 \mathcal{E}_i vanish by EOMs (could be ignored for spectral quantities [Lüscher et al., 1996])

Local fields are more complicated with two contributions

Discretised local field:
$$\Delta J(x) = \mathbf{a^{n_{\min}}} \sum_{i} \bar{\nu}_{i}(g_{0}) J_{i}(x) + \dots,$$

$$\Delta S = \mathbf{a^{n_{\min}}} \int \mathrm{d}^{4}x \sum_{i} \bar{\omega}_{i}(g_{0}) Q_{i}(x) + \dots, \quad Q = \mathcal{O} \cup \mathcal{E}$$

 \mathcal{E}_i vanish by EOMs (could be ignored for spectral quantities [Lüscher et al., 1996])

Example: pion decay constant (Contact-terms will affect matching coefficients d_i)

$$\begin{split} \frac{Z_{\mathrm{A}}(a\mu)\langle 0|\mathrm{A}_{0}(x;a)|\pi(\mathbf{0})\rangle}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} &= 1 + \mathbf{a}^{n_{\min}} \sum_{i} d_{i} \frac{\langle 0|(\mathrm{A}_{0})_{i;\overline{\mathrm{MS}}}(x)|\pi(\mathbf{0})\rangle}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} + \binom{\mathrm{corrections}}{\mathrm{from}\ Z_{\mathrm{A}}} \\ &- \mathbf{a}^{n_{\min}} \sum_{i} c_{i} \int \mathrm{d}^{4}y \frac{\langle 0|\mathrm{A}_{0}(x)Q_{i;\overline{\mathrm{MS}}}(y)|\pi(\mathbf{0})\rangle_{c}}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} + \dots \end{split}$$

Local fields are more complicated with two contributions

Discretised local field:
$$\Delta J(x) = \frac{a^{n_{\min}}}{2} \sum_{i} \bar{\nu}_{i}(g_{0}) J_{i}(x) + \dots$$

Lattice action:
$$\Delta S = a^{n_{\min}} \int \mathrm{d}^4 x \sum_i \bar{\omega}_i(g_0) Q_i(x) + \dots, \quad Q = \mathcal{O} \cup \mathcal{E}$$

 \mathcal{E}_i vanish by EOMs (could be ignored for spectral quantities [Lüscher et al., 1996])

Example: pion decay constant
$$(A_0)_i \to (A_0)_i$$
 s.t. $\hat{\Gamma}_i^A = \frac{(\gamma_0^A)_i}{2b_0} + n_i^I$

$$\begin{split} \frac{Z_{\mathrm{A}}(a\mu)\langle 0|\mathrm{A}_{0}(x;a)|\pi(\mathbf{0})\rangle}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} &= 1 + \mathbf{a''}^{\mathrm{min}} \sum_{i} \hat{d}_{i}[2b_{0}\bar{g}^{2}(1/a)]^{\hat{\Gamma}_{i}^{\mathrm{A}}} \frac{\langle 0|(\mathcal{A}_{0})_{i;\mathrm{RGI}}(x)|\pi(\mathbf{0})\rangle}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} &+ \binom{\mathrm{corrections}}{\mathrm{from}\ Z_{\mathrm{A}}} \\ &- \mathbf{a''}^{\mathrm{min}} \sum_{i} \hat{c}_{i}[2b_{0}\bar{g}^{2}(1/a)]^{\hat{\Gamma}_{i}^{\mathrm{B}}} \int \mathrm{d}^{4}y \frac{\langle 0|\mathrm{A}_{0}(x)\mathcal{B}_{i;\mathrm{RGI}}(y)|\pi(\mathbf{0})\rangle_{c}}{\lim_{a'\searrow 0}[M_{\pi}f_{\pi}](a')} &+ \dots \end{split}$$

Matching coefficients for local fields

Renormalisation of contact term divergences in the SymEFT can shift tree-level matching coefficients of the the local field.

$$egin{pmatrix} a^{n_{\min}} J^{(n_{\min})}(x) \ a^{n_{\min}} ilde{Q}(0) J(x) \ J(x) \end{pmatrix}_{\overline{ ext{MS}}} = egin{pmatrix} Z^{J^{(n_{\min})}} & 0 & 0 \ Z^{QJ} & Z^Q Z^J & 0 \ 0 & 0 & Z^J \end{pmatrix} egin{pmatrix} a^{n_{\min}} J^{(n_{\min})}(x) \ a^{n_{\min}} ilde{Q}(0) J(x) \ J(x) \end{pmatrix}$$

 Z^{QJ} will affect the matching coefficients of fields in $J^{(n_{\min})}$ when diagonalising this mixing matrix.

⇒ Relying solely on classical *a*-expansion leads to incomplete tree-level matching. **But** combining classical *a*-expansion with full off-shell mixing ensures correct matching!

Example: Axial vector basis

O(a): [Lüscher et al., 1996; Bhattacharya et al., 2004, 2006]

$$(A_{\mu}^{kl})_{1}^{(1)} = \partial_{\mu} P^{kl}, \qquad (A_{\mu}^{kl})_{2}^{(1)} = \frac{m_{k+l}}{2} A_{\mu}^{kl}, \qquad (A_{\mu}^{kl})_{3}^{(1)} = \operatorname{tr}(M) A_{\mu}^{kl},$$

$$\mathbf{O}(a^2):$$

$$(\mathbf{A}_{\mu}^{kl})_{1}^{(2)} = \delta_{\mu\rho\lambda}\bar{q}_{k}\gamma_{\rho}\gamma_{5} \stackrel{\longleftrightarrow}{D_{\lambda}^{2}} q_{l}, \qquad (\mathbf{A}_{\mu}^{kl})_{2}^{(2)} = \bar{q}_{k}\gamma_{\rho}\tilde{F}_{\rho\mu}q_{l}, \qquad (\mathbf{A}_{\mu}^{kl})_{3}^{(2)} = m_{k-l}\bar{q}_{k}(\stackrel{\longleftarrow}{D}_{\mu} - D_{\mu})\gamma_{5}q_{l},$$

$$(\mathbf{A}_{\mu}^{kl})_{4}^{(2)} = \frac{\delta_{kl}\delta_{\mu\nu\rho\sigma}}{g^{2}}\mathrm{tr}(D_{\nu}F_{\rho\lambda}\tilde{F}_{\sigma\lambda}), (\mathbf{A}_{\mu}^{kl})_{5}^{(2)} = \frac{\delta_{kl}}{g^{2}}\mathrm{tr}(D_{\rho}F_{\rho\lambda}\tilde{F}_{\mu\lambda}), (\mathbf{A}_{\mu}^{kl})_{6}^{(2)} = \delta_{\mu\rho\lambda}\partial_{\rho}^{2}\mathbf{A}_{\lambda}^{kl},$$

$$(A_{\mu}^{kl})_{4}^{(2)} = \frac{g_{kl}g_{\mu\nu}\rho\sigma}{g^{2}} tr(D_{\nu}F_{\rho\lambda}\tilde{F}_{\sigma\lambda}), (A_{\mu}^{kl})_{5}^{(2)} = \frac{g_{kl}}{g^{2}} tr(D_{\rho}F_{\rho\lambda}\tilde{F}_{\mu\lambda}), (A_{\mu}^{kl})_{6}^{(2)} = \delta_{\mu\rho\lambda}\partial_{\rho}^{2}A_{\lambda}^{kl},$$

$$(A_{\mu}^{kl})_{7}^{(2)} = \partial^{2}A_{\mu}^{kl}, \qquad (A_{\mu}^{kl})_{8}^{(2)} = \frac{m_{k}^{2} + m_{l}^{2}}{2}A_{\mu}^{kl}, \qquad (A_{\mu}^{kl})_{9}^{(2)} = \frac{\delta_{kl}}{\sigma^{2}}\partial_{\mu}tr(F_{\nu\rho}\tilde{F}_{\nu\rho}),$$

$$(A_{\mu}^{kl})_{7}^{(2)} = \partial^{2} A_{\mu}^{kl}, \qquad (A_{\mu}^{kl})_{8}^{(2)} = \frac{m_{k} + M_{l}}{2} A_{\mu}^{kl}, \qquad (A_{\mu}^{kl})_{9}^{(2)} = \frac{\sigma_{kl}}{g^{2}} \partial_{\mu} \operatorname{tr}(F_{\nu\rho} F_{\nu\mu} + M_{l}^{kl})_{9}^{(2)} = \frac{m_{k+l}}{2} (A_{\mu}^{kl})_{i}^{(1)}, \qquad (A_{\mu}^{kl})_{12+i}^{(2)} = \operatorname{tr}(M) (A_{\mu}^{kl})_{i}^{(1)}, \qquad (A_{\mu}^{kl})_{16}^{(2)} = \operatorname{tr}(M^{2}) A_{\mu}^{kl},$$

Additional powers of $\bar{g}^2(1/a)$ for local fields

For each local field J, we have yet another set of higher dimensional operators introducing additional powers

$$\mathbf{a}^{n_{\min}}[2b_0\bar{g}^2(1/a)]^{\hat{\gamma}_i^{\mathcal{J}}+n_i^{\mathrm{I}}}, \quad \hat{\gamma}_i^{\mathcal{J}} = \frac{(\gamma_0^{\mathcal{J}})_i - \gamma_0^{\mathcal{J}}}{2b_0}, \quad \mu \frac{\mathrm{d}\mathcal{J}_{i;\overline{\mathsf{MS}}}(\mu)}{\mathrm{d}\mu} = -(\gamma_0^{\mathcal{J}})_i\bar{g}^2(\mu)\mathcal{J}_{i;\overline{\mathsf{MS}}}(\mu) + \mathrm{O}(\bar{g}^4(\mu)),$$

where $n_i^{\rm I} \geq 0$ depends on improvement and we assume that the 1-loop operator mixing is diagonalisable. $\hat{\gamma}_i^{\mathcal{J}}$ depends only on quantum numbers but not chosen discretisation.

Additional powers of $\bar{g}^2(1/a)$ for local fields

For each local field J, we have yet another set of higher dimensional operators introducing additional powers

$$a^{n_{\min}} [2b_0 \bar{g}^2(1/a)]^{\hat{\gamma}_i^{\mathcal{J}} + n_i^{\mathrm{I}}}, \quad \hat{\gamma}_i^{\mathcal{J}} = \frac{(\gamma_0^{\mathcal{J}})_i - \gamma_0^{\mathcal{J}}}{2b_0}, \quad \mu \frac{\mathrm{d} \mathcal{J}_{i;\overline{\mathsf{MS}}}(\mu)}{\mathrm{d}\mu} = -(\gamma_0^{\mathcal{J}})_i \bar{g}^2(\mu) \mathcal{J}_{i;\overline{\mathsf{MS}}}(\mu) + \mathrm{O}(\bar{g}^4(\mu)),$$

where $n_i^{\rm I} \geq 0$ depends on improvement and we assume that the 1-loop operator mixing is diagonalisable. $\hat{\gamma}_i^{\mathcal{J}}$ depends only on quantum numbers but not chosen discretisation.

 \Rightarrow Beware of continuum fields with large 1-loop anomalous dimensions, i.e., $\gamma_0^J \gtrsim 2b_0!$

Leading powers $a^{n_{\min}}[2b_0\bar{g}^2(1/a)]^{\hat{\gamma}_i+n_i^{\mathrm{I}}}$

```
massive only if k = I
```

\mathcal{J}^{kl} at $\mathbf{O}(a)$	$N_{ m f}$	$\hat{\gamma}^{\mathcal{J}}$
scalar $(k \neq l \text{ only})$	2	0.414
	3	0.444
pseudo-scalar	2	-0.586, 0.414
	3	-0.556, 0.444
vector	2	0.138, <mark>0.414</mark>
	3	0.148, <mark>0.444</mark>
axial-vector	2	-0.414, 0.414
	3	-0.444, <mark>0.444</mark>
tensor	2	-0.138, 0.414
	3	-0.148, 0.444

Leading powers $a^{n_{\min}}[2b_0\bar{g}^2(1/a)]^{\hat{\gamma}_i+n_i^{\mathrm{I}}}$

massive only if k = I

massive omy ii k	•		
\mathcal{J}^{kl} at $\mathbf{O}(\pmb{a})$	$N_{ m f}$	$\hat{\gamma}^{\mathcal{J}}$	${\cal J}^{kl} \sim rac{\delta_{kl}}{g_0^2} { m tr}({\sf F}_{\mu u} ilde{\sf F}_{\mu u})$
scalar $(k \neq l \text{ only})$	2	0.414	-0
	3	0.444	Contact term with $i\bar{\Psi}\sigma_{\mu\nu}F_{\mu\nu}\Psi$ gives
pseudo-scalar	2	-0.586, 0.414	contributions.
	3	-0.556, 0.444	
vector	2	0.138, 0.414	
	3	0.148, <mark>0.444</mark>	
axial-vector	2	-0.414, 0.414	
	3	-0.444, 0.444	
tensor	2	-0.138, 0.414	
	3	-0.148, <mark>0.444</mark>	

+ Powers from SymEFT action! [NH et al., 2022; NH, 2023]

rise to TL

Leading powers $a^{n_{\min}}[2b_0\bar{g}^2(1/a)]^{\hat{\gamma}_i+n_i^{\mathrm{I}}}$

massive only if k = l

massive only if k = r								
\mathcal{J}^{kl} at $\mathbf{O}(\pmb{a})$	$N_{ m f}$	$\hat{\gamma}^{\mathcal{J}}$		$\mathcal{J}_{\mu}^{kl} \sim \partial_{\mu} \mathrm{P}^{kl}, \ \mathcal{J}_{\mu\nu}^{kl} \sim \partial_{\mu} \mathrm{V}_{\nu}^{kl} - \partial_{\nu} \mathrm{V}_{\mu}^{kl}$				
scalar $(k \neq l \text{ only})$	2	0.414		Likely present at TL for discretisations spanning				
	3	0.444						
pseudo-scalar	2	-0.586, 0	.414	multiple lattice sites.				
	3	-0.556, 0	.444	Opposite chirality.				
vector	2	0.138, <mark>0.4</mark>	14	⇒ Suppressed for light quarks in finite vol -				
	3	0.148, <mark>0.4</mark>	.44	ume . May still impact $O(a^2)$.				
axial-vector	2	-0.414	0.414	$\mathcal{J}^{kl}_{\mu u}$ can arise at TL via contact terms with				
	3	-0.444		$iar{\Psi}\sigma_{\mu u}F_{\mu u}\Psi$.				
tensor	2	-0.138,	0.414					
	3	-0.148 ,	0.444					

Leading powers $a^{n_{\min}}[2b_0\bar{g}^2(1/a)]^{\hat{\gamma}_i+n_i^1}$

```
massive only if k = I massive, only if k \neq I and non-degenerate
 \mathcal{J}^{kl} at O(a^2)
                       N_{
m f} \hat{\gamma}^{\mathcal{J}}
 scalar (k \neq l \text{ only})
                        2 0. 0.483. 0.828
                         3 0, 0.519, 0.889
 pseudo-scalar
                         2 -0.172, 0, 0.483, 0.828
                         3 -0.111, 0, 0.519, 0.889
                         2 0. 0.368, 0.552, 0.575, 0.828
 vector
                         3 0. 0.395, 0.593, 0.617, 0.889
 axial-vector
                         2 -1, 0, 0.368, 0.506, 0.552, 0.559, 0.575, 0.828, 1.085
                         3 -1.0.0.395.0.593.0.595.0.617.0.889.1.244
                         2 0. 0.276, 0.46, 0.563, 0.69, 0.828
 tensor
                            0. 0.296. 0.494. 0.605. 0.741. 0.889
```

Leading powers $a^{n_{\min}}[2b_0ar{g}^2(1/a)]^{\hat{\gamma}_i+n_i^1}$

massive only if k = I massive, only if $k \neq I$ and non-degenerate

\mathcal{J}^{kl} at $\mathbf{O}(\pmb{a^2})$	$N_{ m f}$	$\mathcal{J}^{kl} \sim m \frac{\delta_{kl}}{g_o^2} \mathrm{tr}(F_{\mu\nu} \tilde{F}_{\mu\nu}), \ \mathcal{J}^{kl}_{\mu} \sim \frac{\delta_{kl}}{g_o^2} \partial_{\mu} \mathrm{tr}(F_{\nu\rho} \tilde{F}_{\nu\rho})$		
scalar $(k \neq l \text{ only})$	2	0, 0.483, 0.828 Massive / total divergence version but other-		
	3	0. 0.519. 0.889		
pseudo-scalar	2	-0.172, 0, 0.48 wise the same as $O(a)$ term.		
	3	-0.111 , 0, 0.519, 0.889		
vector	2	0, 0.368, <mark>0.552</mark> , 0.575, <mark>0.828</mark>		
	3	0, 0.395, <mark>0.593</mark> , 0.617, <mark>0.889</mark>		
axial-vector	2	-1, 0, 0.368, 0.506, 0.552, 0.559, 0.575, 0.828, 1.085		
	3	-1, 0, 0.395, 0.593, 0.595 , 0.617, 0.889 , 1.244		
tensor	2	0, <mark>0.276</mark> , 0.46, 0.563, 0.69, <mark>0.828</mark>		
	3	0, <mark>0.296</mark> , 0.494, 0.605, 0.741, <mark>0.889</mark>		

Conclusion

- O(a): Axial and tensor have negative powers in the coupling also for non-singlets but terms have opposite chirality. Unhandled, those terms may severely worsen $O(a^2)$.
- $O(a^2)$: Negative powers in the coupling only for flavours k = l (if fully O(a) improved).
- Finding the minimal bases, split properly into on-shell and EOM-vanishing is a very tedious task.
- Computing 1-loop mixing including SymEFT action contact terms can be automated to a high degree.¹ ⇒ Affects tree-level matching.
- Do not forget about SymEFT action ⇒ Unfortunately many more powers relevant.
- Nowadays, lattice QCD simulations reach lattice spacings $a\sim 0.04\,{\rm fm}$, i.e., $\alpha_{\overline{\rm MS}}^{\text{5-loop}}(1/a)\sim 0.21$.

¹https://github.com/nikolai-husung/Symanzik-QCD-workflow

Restrictions

- Assumes lattice actions that fulfil at least symmetry-constraints of Wilson-type quarks.
- Only applicable to local fields, i.e., integrated correlation functions get (additional) contributions including log-enhanced cut-off effects [Cè et al., 2021; Sommer et al., 2023].
 - ⇒ "Window quantities" away from short-distances should be accessible!
- Results incomplete to account for off-shell renormalisation in, e.g., RI/(S)MOM.
 - ⇒ Cannot (trivially) ignore EOM operators anymore.
 - \Rightarrow Some schemes even have intrinsic gauge-choice dependence!

What remains to be done (at the very least)

- Other local fields of interest, e.g., energy-momentum tensor, 4-quark operators, ...
- $\hat{\gamma}_i^{\mathcal{J}} = \frac{(\gamma_0^{\mathcal{J}})_i \gamma_0^{\mathcal{J}}}{2b_0}$, if $\gamma_0^{\mathcal{J}}$ is very positive such local fields should probably be checked first, e.g., 4-quark operators in [Ciuchini et al., 1998]. No guarantee for any local field!
- Further complication if the continuum local fields mix under renormalisation.
- YM Gradient flow in full QCD. Also flowed fermion fields?
- (Unrooted) staggered quark action.
 - \Rightarrow Generalisation to rooted should be possible with certain conjectures.

Far from complete:

- o QCD+QED: enlarges the minimal operator basis further.
- \circ Combine lattice $\chi {\rm PT}$ formulae with powers obtained here?
- Any further insight into smearing?
- o More exotic improvement, e.g., adding Pauli-Villars fields, Anna Hasenfratz' parallel talk.

o ...

References

- J. Balog, F. Niedermayer, and P. Weisz. Logarithmic corrections to $O(a^2)$ lattice artifacts. *Phys. Lett.*, B676:188–192, 2009.
- J. Balog, F. Niedermayer, and P. Weisz. The Puzzle of apparent linear lattice artifacts in the 2d non-linear sigma-model and Symanzik's solution. *Nucl. Phys.*, B824:563–615, 2010.
- NH, P. Marquard, and R. Sommer. Asymptotic behavior of cutoff effects in Yang-Mills theory and in Wilson's lattice QCD. *Eur. Phys. J. C*, 80(3):200, 2020.
- NH, P. Marquard, and R. Sommer. The asymptotic approach to the continuum of lattice QCD spectral observables. *Phys. Lett. B*, 829:137069, 2022.
- NH. Logarithmic corrections to O(a) and $O(a^2)$ effects in lattice QCD with Wilson or Ginsparg–Wilson quarks. *Eur. Phys. J. C*, 83(2):142, 2023.

References

- K. Symanzik. Cutoff dependence in lattice ϕ_4^4 theory. NATO Sci. Ser. B, 59:313–330, 1980.
- K. Symanzik. Some Topics in Quantum Field Theory. In *Mathematical Problems in Theoretical Physics. Proceedings, 6th International Conference on Mathematical Physics, West Berlin, Germany, August 11-20, 1981*, pages 47–58, 1981.
- K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 1. Principles and ϕ^4 Theory. *Nucl. Phys.*, B226:187–204, 1983a.
- K. Symanzik. Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory. *Nucl. Phys.*, B226:205–227, 1983b.
- M. Lüscher, S. Sint, R. Sommer, and P. Weisz. Chiral symmetry and O(a) improvement in lattice QCD. *Nucl. Phys.*, B478:365–400, 1996.

References

- T. Bhattacharya, R. Gupta, W.-j. Lee, S. R. Sharpe, and J. M. Wu. Improved bilinears in unquenched lattice QCD. *Nucl. Phys. B Proc. Suppl.*, 129:441–443, 2004.
- T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe, and J. M. Wu. Improved bilinears in lattice QCD with non-degenerate quarks. *Phys. Rev. D*, 73:034504, 2006.
- M. Cè, T. Harris, H. B. Meyer, A. Toniato, and C. Török. Vacuum correlators at short distances from lattice QCD. *JHEP*, 12:215, 2021.
- R. Sommer, L. Chimirri, and NH. Log-enhanced discretization errors in integrated correlation functions. *PoS*, LATTICE2022:358, 2023.
- M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi, and L. Silvestrini. Next-to-leading order QCD corrections to Delta F=2 effective Hamiltonians. *Nucl. Phys. B*, 523:501–525, 1998.