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Motivation: Continuum extrapolation

Observable [arbitrary units]
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In an asymptotically free theory, like QCD, leading lattice
artifacts are of the form (up to factors of log g(1/a))
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+ O(anmin+1’ a"ming—2ﬁi‘F2(1/a)7 )

['; can be negative and distinctly nonzero
= impact on convergence.
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Warning example: 2d O(3) non-linear sigma model min F; = —3  [Balog et al., 2009, 2010]

= Compute [; in QCD to gain better control over continuum extrapolation.
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Spectral quantities get corrections from the lattice action
AS = g"min / d*x > @i(g0)O0i(x) + . ..
i

Example: hadron masses
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where I8 = (15);/(2by) + n! can be obtained from 1-loop running of the operators O;
dO; ms (1) _
g = ~08)wE (1 Osars ()

and a change of basis O — B s.t. ’y(lf is diagonal.
Leading powers f,b for pure gauge, Wilson and GW quarks [NH et al., 2020, 2022; NH, 2023] 2
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Example: pion decay constant (Contact-terms will affect matching coefficients d;)
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Example: pion decay constant (Ag); — (Ag); s.t. 4 = (70 )i + n}
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Matching coefficients for local fields

Renormalisation of contact term divergences in the SymEFT can shift tree-level matching
coefficients of the the local field.

a"minJ(nmin)(X) Z_](”min) 0 0 anminJ(”min)(X)
a™in Q(0)J(x) = z% Zz9zJ o || a™nQ(0)J(x)
J(x) i 0 o z J(x)

Z will affect the matching coefficients of fields in J("min) when diagonalising this mixing
matrix.

= Relying solely on classical a-expansion leads to incomplete tree-level matching.
But combining classical a-expansion with full off-shell mixing ensures correct matching!



Example: Axial vector basis

O(a): [Liischer et al., 1996; Bhattacharya et al., 2004, 2006]

(Azl)gl) _ a“Pk/’ (AZ’)S) _ %A;ﬁlv (AZ/)S) _ tr(/\/l)A/’fL’,
0(a?):
(Aﬁl)f) = 6MpAqk7075<?Aqlv (Ak’)( ) = = Gkvp Fona, (Aﬁl)f) = mkflqk(Bu — Dy)vsqi,
(A = M0, Fon o), (AK)EY = S1r(DyFon o), (AX)EY = dnEAY.
(Ak/)(Q) — 92AK, (Akl)(2) _ WAZ/’ (Aﬁl)é) %3 t(FupFop),
(AN =5 @Y, (AR, =an@h?, anE = tr(wmza



Additional powers of g?(1/a) for local fields

For each local field J, we have yet another set of higher dimensional operators introducing

additional powers

» 4T 17
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where n} > 0 depends on improvement and we assume that the 1-loop operator mixing is

diagonalisable. 'Ay;j depends only on quantum numbers but not chosen discretisation.
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For each local field J, we have yet another set of higher dimensional operators introducing

additional powers

» AT 515
a™min[2hog?(1/a)] 7+, 47 = (%2),)0 %, o j’g/':(u) = (%)% (1) Ty s (1) +O(8* (1)),

where n} > 0 depends on improvement and we assume that the 1-loop operator mixing is

diagonalisable. 'Aylj depends only on quantum numbers but not chosen discretisation.

= Beware of continuum fields with large 1-loop anomalous dimensions, i.e., 7§ = 2bg!



Leading powers a"min[2b0g2(1/a)]~7,-+n,!

massive only if k =1/

JH at O(a) Ny 37
scalar (k # lonly) | 2 0.414
3 0.444
pseudo-scalar 2 —0.586, 0.414
3 —0.556, 0.444
vector 2 0.138, 0.414
3 0.148, 0.444
axial-vector 2 —0.414,0.414
3 —0.444, 0.444
tensor 2 —0.138, 0.414
3 —0.148, 0.444

+ Powers from SymEFT action! [NH et al, 2022; NH, 2023]
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' multiple lattice sites.
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3 _0556 0.444 Opposite chirality.

vector 2 0 1'38 64i4 = Suppressed for light quarks in finite vol-
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e 2 0414 0.414 j_ﬂ can arise at TL via contact terms with
3 —0444, 0444 Vo FuV.
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Leading powers a"min[2b0g2(1/a)]~7,-+n,!

massive only if k =/ massive, only if k # | and non-degenerate
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Conclusion

e 0O(a): Axial and tensor have negative powers in the coupling also for non-singlets but
terms have opposite chirality. Unhandled, those terms may severely worsen O(a?).

e 0(a?): Negative powers in the coupling only for flavours k = / (if fully O(a) improved).

e Finding the minimal bases, split properly into on-shell and EOM-vanishing is a very
tedious task.

e Computing 1-loop mixing including SymEFT action contact terms can be automated to

a high degree.!

= Affects tree-level matching.
e Do not forget about SymEFT action = Unfortunately many more powers relevant.

e Nowadays, lattice QCD simulations reach lattice spacings a ~ 0.04 fm, i.e.,
2% (1/a) ~ 0.21.

'https://github.com/nikolai-husung/Symanzik-QCD-workflow



https://github.com/nikolai-husung/Symanzik-QCD-workflow

e Assumes lattice actions that fulfil at least symmetry-constraints of Wilson-type quarks.

e Only applicable to local fields, i.e., integrated correlation functions get (additional)
contributions including log-enhanced cut-off effects [Ce et al., 2021; Sommer et al., 2023].
= “Window quantities” away from short-distances should be accessible!

e Results incomplete to account for off-shell renormalisation in, e.g., RI/(S)MOM.

= Cannot (trivially) ignore EOM operators anymore.
= Some schemes even have intrinsic gauge-choice dependence!



What remains to be done (at the very least)

e Other Iogal fields of interest, e.g., energy-momentum tensor, 4-quark operators, ...
o~
o 47 = O0)i=% i Ad is ver positive such local fields should probably be checked first,
I 2b0 70 y y

e.g., 4-quark operators in [Ciuchini et al., 1998]. No guarantee for any local field!
e Further complication if the continuum local fields mix under renormalisation.

YM Gradient flow in full QCD. Also flowed fermion fields?
(Unrooted) staggered quark action.

= Generalisation to rooted should be possible with certain conjectures.

Far from complete:
QCD+QED: enlarges the minimal operator basis further.

o

o

Combine lattice xYPT formulae with powers obtained here?

(¢]

Any further insight into smearing?

o More exotic improvement, e.g., adding Pauli-Villars fields, Anna Hasenfratz' parallel talk.
o ... 10
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